llm-twin-course
๐ค ๐๐ฒ๐ฎ๐ฟ๐ป for ๐ณ๐ฟ๐ฒ๐ฒ how to ๐ฏ๐๐ถ๐น๐ฑ an end-to-end ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป-๐ฟ๐ฒ๐ฎ๐ฑ๐ ๐๐๐ & ๐ฅ๐๐ ๐๐๐๐๐ฒ๐บ using ๐๐๐ ๐ข๐ฝ๐ best practices: ~ ๐ด๐ฐ๐ถ๐ณ๐ค๐ฆ ๐ค๐ฐ๐ฅ๐ฆ + 12 ๐ฉ๐ข๐ฏ๐ฅ๐ด-๐ฐ๐ฏ ๐ญ๐ฆ๐ด๐ด๐ฐ๐ฏ๐ด
Stars: 2207
The LLM Twin Course is a free, end-to-end framework for building production-ready LLM systems. It teaches you how to design, train, and deploy a production-ready LLM twin of yourself powered by LLMs, vector DBs, and LLMOps good practices. The course is split into 11 hands-on written lessons and the open-source code you can access on GitHub. You can read everything and try out the code at your own pace.
README:
By finishing the "LLM Twin: Building Your Production-Ready AI Replica" free course, you will learn how to design, train, and deploy a production-ready LLM twin of yourself powered by LLMs, vector DBs, and LLMOps good practices.
Why should you care? ๐ซต
โ No more isolated scripts or Notebooks! Learn production ML by building and deploying an end-to-end production-grade LLM system.
You will learn how to architect and build a real-world LLM system from start to finishโ-โfrom data collection to deployment.
You will also learn to leverage MLOps best practices, such as experiment trackers, model registries, prompt monitoring, and versioning.
The end goal? Build and deploy your own LLM twin.
What is an LLM Twin? It is an AI character that learns to write like somebody by incorporating its style and personality into an LLM.
- 1. The architecture of the LLM twin is split into 4 Python microservices:
- 2. Who is this for?
- 3. How will you learn?
- 4. Costs?
- 5. Questions and troubleshooting
- 6. Lessons
- 7. Install & Usage
- 8. Meet your teachers!
- 9. License
- 10. Contributors
- 11. Sponsors
- Crawl your digital data from various social media platforms.
- Clean, normalize and load the data to a Mongo NoSQL DB through a series of ETL pipelines.
- Send database changes to a RabbitMQ queue using the CDC pattern.
- โ๏ธ Deployed on AWS.
- Consume messages from a queue through a Bytewax streaming pipeline.
- Every message will be cleaned, chunked, embedded and loaded into a Qdrant vector DB in real-time.
- In the bonus series, we refactor the cleaning, chunking, and embedding logic using Superlinked, a specialized vector compute engine. We will also load and index the vectors to Redis vector search.
- โ๏ธ Deployed on AWS.
- Create a custom dataset based on your digital data.
- Fine-tune an LLM using QLoRA.
- Use Comet ML's experiment tracker to monitor the experiments.
- Evaluate and save the best model to Comet's model registry.
- โ๏ธ Deployed on Qwak.
- Load the fine-tuned LLM from Comet's model registry.
- Deploy it as a REST API.
- Enhance the prompts using advanced RAG.
- Generate content using your LLM twin.
- Monitor the LLM using Comet's prompt monitoring dashboard.
- In the bonus series, we refactor the advanced RAG layer to write more optimal queries using Superlinked.
- โ๏ธ Deployed on Qwak.
Along the 4 microservices, you will learn to integrate 3 serverless tools:
Audience: MLE, DE, DS, or SWE who want to learn to engineer production-ready LLM systems using LLMOps good principles.
Level: intermediate
Prerequisites: basic knowledge of Python, ML, and the cloud
The course contains 11 hands-on written lessons and the open-source code you can access on GitHub.
You can read everything and try out the code at your own pace.ย
The articles and code are completely free. They will always remain free.
If you plan to run the code while reading it, you have to know that we use several cloud tools that might generate additional costs.
Pay as you go
-
AWS offers accessible plans to new joiners.
- For a new first-time account, you could get up to 300$ in free credits which are valid for 6 months. For more, consult the AWS Offerings page.
-
Qwak has a QPU based pricing plan. Here's what you need to know:
- A QPU stands for Qwak Processing Unit, and is the equivalent of 4vCPU-16GB.
- Qwak offers up to 100QPU/month for free for up to one year after registration.
- After that, a policy of 1.2$/QPU is applied as a pay-as-you-go tactic.
- To find more about Qwak pricing, consult Qwak Pricing Page
- To find more about Qwak Compute Instances, consult Qwak Instances Page
Freemium (Free-of-Charge)
Please ask us any questions if anything gets confusing while studying the articles or running the code.
You can ask any question
by opening an issue
in this GitHub repository by clicking here.
โ Quick overview of each lesson of the LLM Twin free course.
[!IMPORTANT] To understand the entire code step-by-step, check out our articles โ
The course is split into 12 lessons. Every Medium article represents an independent lesson.
The lessons are NOT 1:1 with the folder structure!
- The Importance of Data Pipelines in the Era of Generative AI
- Change Data Capture: Enabling Event-Driven Architectures
- SOTA Python Streaming Pipelines for Fine-tuning LLMs and RAG โ in Real-Time!
- The 4 Advanced RAG Algorithms You Must Know to Implement
- The Role of Feature Stores in Fine-Tuning LLMs: From raw data to instruction dataset
- How to fine-tune LLMs on custom datasets at Scale using Qwak and CometML
- Best Practices when evaluating fine-tuned LLMs
- Architect scalable and cost-effective LLM & RAG inference pipelines
- How to evaluate your RAG using RAGAs Framework
To understand how to install and run the LLM Twin code, go to the INSTALL_AND_USAGE dedicated document.
[!NOTE] Even though you can run everything solely using the INSTALL_AND_USAGE dedicated document, we recommend that you read the articles to understand the LLM Twin system and design choices fully.
The bonus Superlinked series has an extra dedicated README that you can access under the 6-bonus-superlinked-rag directory.
In that section, we explain how to run it with the improved RAG layer powered by Superlinked.
The course is created under the Decoding ML umbrella by:
Paul Iusztin Senior ML & MLOps Engineer |
|
Alexandru Vesa Senior AI Engineer |
|
Rฤzvanศ Alexandru Senior ML Engineer |
This course is an open-source project released under the MIT license. Thus, as long you distribute our LICENSE and acknowledge our work, you can safely clone or fork this project and use it as a source of inspiration for whatever you want (e.g., university projects, college degree projects, personal projects, etc.).
A big "Thank you ๐" to all our contributors! This course is possible only because of their efforts.
Also, another big "Thank you ๐" to all our sponsors who supported our work and made this course possible.
Comet | Bytewax | Qdrant | Qwak | Superlinked |
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for llm-twin-course
Similar Open Source Tools
llm-twin-course
The LLM Twin Course is a free, end-to-end framework for building production-ready LLM systems. It teaches you how to design, train, and deploy a production-ready LLM twin of yourself powered by LLMs, vector DBs, and LLMOps good practices. The course is split into 11 hands-on written lessons and the open-source code you can access on GitHub. You can read everything and try out the code at your own pace.
cosdata
Cosdata is a cutting-edge AI data platform designed to power the next generation search pipelines. It features immutability, version control, and excels in semantic search, structured knowledge graphs, hybrid search capabilities, real-time search at scale, and ML pipeline integration. The platform is customizable, scalable, efficient, enterprise-grade, easy to use, and can manage multi-modal data. It offers high performance, indexing, low latency, and high requests per second. Cosdata is designed to meet the demands of modern search applications, empowering businesses to harness the full potential of their data.
llmops-duke-aipi
LLMOps Duke AIPI is a course focused on operationalizing Large Language Models, teaching methodologies for developing applications using software development best practices with large language models. The course covers various topics such as generative AI concepts, setting up development environments, interacting with large language models, using local large language models, applied solutions with LLMs, extensibility using plugins and functions, retrieval augmented generation, introduction to Python web frameworks for APIs, DevOps principles, deploying machine learning APIs, LLM platforms, and final presentations. Students will learn to build, share, and present portfolios using Github, YouTube, and Linkedin, as well as develop non-linear life-long learning skills. Prerequisites include basic Linux and programming skills, with coursework available in Python or Rust. Additional resources and references are provided for further learning and exploration.
BloxAI
Blox AI is a platform that allows users to effortlessly create flowcharts and diagrams, collaborate with teams, and receive explanations from the Google Gemini model. It offers rich text editing, versatile visualizations, secure workspaces, and limited files allotment. Users can install it as an app and use it for wireframes, mind maps, and algorithms. The platform is built using Next.Js, Typescript, ShadCN UI, TailwindCSS, Convex, Kinde, EditorJS, and Excalidraw.
-Topaz-DeNoise-AI-Tool
Topaz DeNoise AI is a powerful tool designed for photographers and videographers to enhance image quality by reducing noise while preserving detail. It leverages advanced AI algorithms to clean up images, providing stunning results without sacrificing clarity. With features like AI-powered noise reduction, detail preservation, batch processing, and a user-friendly interface, users can easily improve the quality of their visuals. The tool offers a seamless workflow from downloading and installing the software to uploading images and applying noise reduction. Additionally, it provides documentation, contribution guidelines, and emphasizes security and responsible use.
Ollama-Colab-Integration
Ollama Colab Integration V4 is a tool designed to enhance the interaction and management of large language models. It allows users to quantize models within their notebook environment, access a variety of models through a user-friendly interface, and manage public endpoints efficiently. The tool also provides features like LiteLLM proxy control, model insights, and customizable model file templating. Users can troubleshoot model loading issues, CPU fallback strategies, and manage VRAM and RAM effectively. Additionally, the tool offers functionalities for downloading model files from Hugging Face, model conversion with high precision, model quantization using Q and Kquants, and securely uploading converted models to Hugging Face.
doc2plan
doc2plan is a browser-based application that helps users create personalized learning plans by extracting content from documents. It features a Creator for manual or AI-assisted plan construction and a Viewer for interactive plan navigation. Users can extract chapters, key topics, generate quizzes, and track progress. The application includes AI-driven content extraction, quiz generation, progress tracking, plan import/export, assistant management, customizable settings, viewer chat with text-to-speech and speech-to-text support, and integration with various Retrieval-Augmented Generation (RAG) models. It aims to simplify the creation of comprehensive learning modules tailored to individual needs.
AgentForge
AgentForge is a low-code framework tailored for the rapid development, testing, and iteration of AI-powered autonomous agents and Cognitive Architectures. It is compatible with a range of LLM models and offers flexibility to run different models for different agents based on specific needs. The framework is designed for seamless extensibility and database-flexibility, making it an ideal playground for various AI projects. AgentForge is a beta-testing ground and future-proof hub for crafting intelligent, model-agnostic autonomous agents.
oreilly-retrieval-augmented-gen-ai
This repository focuses on Retrieval-Augmented Generation (RAG) and Large Language Models (LLMs). It provides code and resources to augment LLMs with real-time data for dynamic, context-aware applications. The content covers topics such as semantic search, fine-tuning embeddings, building RAG chatbots, evaluating LLMs, and using knowledge graphs in RAG. Prerequisites include Python skills, knowledge of machine learning and LLMs, and introductory experience with NLP and AI models.
UFO
UFO is a UI-focused dual-agent framework to fulfill user requests on Windows OS by seamlessly navigating and operating within individual or spanning multiple applications.
magpie
This is the official repository for 'Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing'. Magpie is a tool designed to synthesize high-quality instruction data at scale by extracting it directly from an aligned Large Language Models (LLMs). It aims to democratize AI by generating large-scale alignment data and enhancing the transparency of model alignment processes. Magpie has been tested on various model families and can be used to fine-tune models for improved performance on alignment benchmarks such as AlpacaEval, ArenaHard, and WildBench.
bionic-gpt
BionicGPT is an on-premise replacement for ChatGPT, offering the advantages of Generative AI while maintaining strict data confidentiality. BionicGPT can run on your laptop or scale into the data center.
Instrukt
Instrukt is a terminal-based AI integrated environment that allows users to create and instruct modular AI agents, generate document indexes for question-answering, and attach tools to any agent. It provides a platform for users to interact with AI agents in natural language and run them inside secure containers for performing tasks. The tool supports custom AI agents, chat with code and documents, tools customization, prompt console for quick interaction, LangChain ecosystem integration, secure containers for agent execution, and developer console for debugging and introspection. Instrukt aims to make AI accessible to everyone by providing tools that empower users without relying on external APIs and services.
felafax
Felafax is a framework designed to tune LLaMa3.1 on Google Cloud TPUs for cost efficiency and seamless scaling. It provides a Jupyter notebook for continued-training and fine-tuning open source LLMs using XLA runtime. The goal of Felafax is to simplify running AI workloads on non-NVIDIA hardware such as TPUs, AWS Trainium, AMD GPU, and Intel GPU. It supports various models like LLaMa-3.1 JAX Implementation, LLaMa-3/3.1 PyTorch XLA, and Gemma2 Models optimized for Cloud TPUs with full-precision training support.
extensionOS
Extension | OS is an open-source browser extension that brings AI directly to users' web browsers, allowing them to access powerful models like LLMs seamlessly. Users can create prompts, fix grammar, and access intelligent assistance without switching tabs. The extension aims to revolutionize online information interaction by integrating AI into everyday browsing experiences. It offers features like Prompt Factory for tailored prompts, seamless LLM model access, secure API key storage, and a Mixture of Agents feature. The extension was developed to empower users to unleash their creativity with custom prompts and enhance their browsing experience with intelligent assistance.
nextpy
Nextpy is a cutting-edge software development framework optimized for AI-based code generation. It provides guardrails for defining AI system boundaries, structured outputs for prompt engineering, a powerful prompt engine for efficient processing, better AI generations with precise output control, modularity for multiplatform and extensible usage, developer-first approach for transferable knowledge, and containerized & scalable deployment options. It offers 4-10x faster performance compared to Streamlit apps, with a focus on cooperation within the open-source community and integration of key components from various projects.
For similar tasks
llm-twin-course
The LLM Twin Course is a free, end-to-end framework for building production-ready LLM systems. It teaches you how to design, train, and deploy a production-ready LLM twin of yourself powered by LLMs, vector DBs, and LLMOps good practices. The course is split into 11 hands-on written lessons and the open-source code you can access on GitHub. You can read everything and try out the code at your own pace.
maxtext
MaxText is a high-performance, highly scalable, open-source LLM written in pure Python/Jax and targeting Google Cloud TPUs and GPUs for training and inference. MaxText achieves high MFUs and scales from single host to very large clusters while staying simple and "optimization-free" thanks to the power of Jax and the XLA compiler. MaxText aims to be a launching off point for ambitious LLM projects both in research and production. We encourage users to start by experimenting with MaxText out of the box and then fork and modify MaxText to meet their needs.
swift
SWIFT (Scalable lightWeight Infrastructure for Fine-Tuning) supports training, inference, evaluation and deployment of nearly **200 LLMs and MLLMs** (multimodal large models). Developers can directly apply our framework to their own research and production environments to realize the complete workflow from model training and evaluation to application. In addition to supporting the lightweight training solutions provided by [PEFT](https://github.com/huggingface/peft), we also provide a complete **Adapters library** to support the latest training techniques such as NEFTune, LoRA+, LLaMA-PRO, etc. This adapter library can be used directly in your own custom workflow without our training scripts. To facilitate use by users unfamiliar with deep learning, we provide a Gradio web-ui for controlling training and inference, as well as accompanying deep learning courses and best practices for beginners. Additionally, we are expanding capabilities for other modalities. Currently, we support full-parameter training and LoRA training for AnimateDiff.
ipex-llm
IPEX-LLM is a PyTorch library for running Large Language Models (LLMs) on Intel CPUs and GPUs with very low latency. It provides seamless integration with various LLM frameworks and tools, including llama.cpp, ollama, Text-Generation-WebUI, HuggingFace transformers, and more. IPEX-LLM has been optimized and verified on over 50 LLM models, including LLaMA, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, and RWKV. It supports a range of low-bit inference formats, including INT4, FP8, FP4, INT8, INT2, FP16, and BF16, as well as finetuning capabilities for LoRA, QLoRA, DPO, QA-LoRA, and ReLoRA. IPEX-LLM is actively maintained and updated with new features and optimizations, making it a valuable tool for researchers, developers, and anyone interested in exploring and utilizing LLMs.
Awesome-LLM-Inference
Awesome-LLM-Inference: A curated list of ๐Awesome LLM Inference Papers with Codes, check ๐Contents for more details. This repo is still updated frequently ~ ๐จโ๐ปโ Welcome to star โญ๏ธ or submit a PR to this repo!
lingo
Lingo is a lightweight ML model proxy that runs on Kubernetes, allowing you to run text-completion and embedding servers without changing OpenAI client code. It supports serving OSS LLMs, is compatible with OpenAI API, plug-and-play with messaging systems, scales from zero based on load, and has zero dependencies. Namespaced with no cluster privileges needed.
Awesome-LLM-Compression
Awesome LLM compression research papers and tools to accelerate LLM training and inference.
For similar jobs
db2rest
DB2Rest is a modern low-code REST DATA API platform that simplifies the development of intelligent applications. It seamlessly integrates existing and new databases with language models (LMs/LLMs) and vector stores, enabling the rapid delivery of context-aware, reasoning applications without vendor lock-in.
mage-ai
Mage is an open-source data pipeline tool for transforming and integrating data. It offers an easy developer experience, engineering best practices built-in, and data as a first-class citizen. Mage makes it easy to build, preview, and launch data pipelines, and provides observability and scaling capabilities. It supports data integrations, streaming pipelines, and dbt integration.
airbyte
Airbyte is an open-source data integration platform that makes it easy to move data from any source to any destination. With Airbyte, you can build and manage data pipelines without writing any code. Airbyte provides a library of pre-built connectors that make it easy to connect to popular data sources and destinations. You can also create your own connectors using Airbyte's no-code Connector Builder or low-code CDK. Airbyte is used by data engineers and analysts at companies of all sizes to build and manage their data pipelines.
labelbox-python
Labelbox is a data-centric AI platform for enterprises to develop, optimize, and use AI to solve problems and power new products and services. Enterprises use Labelbox to curate data, generate high-quality human feedback data for computer vision and LLMs, evaluate model performance, and automate tasks by combining AI and human-centric workflows. The academic & research community uses Labelbox for cutting-edge AI research.
telemetry-airflow
This repository codifies the Airflow cluster that is deployed at workflow.telemetry.mozilla.org (behind SSO) and commonly referred to as "WTMO" or simply "Airflow". Some links relevant to users and developers of WTMO: * The `dags` directory in this repository contains some custom DAG definitions * Many of the DAGs registered with WTMO don't live in this repository, but are instead generated from ETL task definitions in bigquery-etl * The Data SRE team maintains a WTMO Developer Guide (behind SSO)
airflow
Apache Airflow (or simply Airflow) is a platform to programmatically author, schedule, and monitor workflows. When workflows are defined as code, they become more maintainable, versionable, testable, and collaborative. Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command line utilities make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress, and troubleshoot issues when needed.
airbyte-platform
Airbyte is an open-source data integration platform that makes it easy to move data from any source to any destination. With Airbyte, you can build and manage data pipelines without writing any code. Airbyte provides a library of pre-built connectors that make it easy to connect to popular data sources and destinations. You can also create your own connectors using Airbyte's low-code Connector Development Kit (CDK). Airbyte is used by data engineers and analysts at companies of all sizes to move data for a variety of purposes, including data warehousing, data analysis, and machine learning.
chronon
Chronon is a platform that simplifies and improves ML workflows by providing a central place to define features, ensuring point-in-time correctness for backfills, simplifying orchestration for batch and streaming pipelines, offering easy endpoints for feature fetching, and guaranteeing and measuring consistency. It offers benefits over other approaches by enabling the use of a broad set of data for training, handling large aggregations and other computationally intensive transformations, and abstracting away the infrastructure complexity of data plumbing.