synmetrix
Synmetrix – production-ready open source semantic layer on Cube
Stars: 510
Synmetrix is an open source data engineering platform and semantic layer for centralized metrics management. It provides a complete framework for modeling, integrating, transforming, aggregating, and distributing metrics data at scale. Key features include data modeling and transformations, semantic layer for unified data model, scheduled reports and alerts, versioning, role-based access control, data exploration, caching, and collaboration on metrics modeling. Synmetrix leverages Cube.js to consolidate metrics from various sources and distribute them downstream via a SQL API. Use cases include data democratization, business intelligence and reporting, embedded analytics, and enhancing accuracy in data handling and queries. The tool speeds up data-driven workflows from metrics definition to consumption by combining data engineering best practices with self-service analytics capabilities.
README:
Website • Docs • Cube.js Models docs • Docker Hub • Slack community
Synmetrix (prev. MLCraft) is an open source data engineering platform and semantic layer for centralized metrics management. It provides a complete framework for modeling, integrating, transforming, aggregating, and distributing metrics data at scale.
- Data modeling and transformations: Flexibly define metrics and dimensions using SQL and Cube data models. Apply transformations and aggregations.
- Semantic layer: Consolidate metrics from across sources into a unified, governed data model. Eliminate metric definition differences.
- Scheduled reports and alerts: Monitor metrics and get notified of changes via configurable reports and alerts.
- Versioning: Track schema changes over time for transparency and auditability.
- Role-based access control: Manage permissions for data models and metrics access.
- Data exploration: Analyze metrics through the UI, or integrate with any BI tool via the SQL API.
- Caching: Optimize performance using pre-aggregations and caching from Cube.
- Teams: Collaborate on metrics modeling across your organization.
Synmetrix leverages Cube (Cube.js) to implement flexible data models that can consolidate metrics from across warehouses, databases, APIs and more. This unified semantic layer eliminates differences in definitions and calculations, providing a single source of truth.
The metrics data model can then be distributed downstream to any consumer via a SQL API, allowing integration into BI tools, reporting, dashboards, data science, and more.
By combining best practices from data engineering, like caching, orchestration, and transformation, with self-service analytics capabilities, Synmetrix speeds up data-driven workflows from metrics definition to consumption.
-
Data Democratization: Synmetrix makes data accessible to non-experts, enabling everyone in an organization to make data-driven decisions easily.
-
Business Intelligence (BI) and Reporting: Integrate Synmetrix with any BI tool for advanced reporting and analytics, enhancing data visualization and insights.
- Embedded Analytics: Use the Synmetrix API to embed analytics directly into applications, providing users with real-time data insights within their workflows.
- Integrating Synmetrix with Observable: A Quick Guide (Video)
- Guide to Connecting Synmetrix with DBeaver Using SQL API (Video)
- Semantic Layer for LLM: Enhance LLM's accuracy in data handling and queries with Synmetrix's semantic layer, improving data interaction and precision.
Ensure the following software is installed before proceeding:
The repository mlcraft-io/mlcraft/install-manifests houses all the necessary installation manifests for deploying Synmetrix anywhere. You can download the docker compose file from this repository:
Execute this in a new directory
wget https://raw.githubusercontent.com/mlcraft-io/mlcraft/main/install-manifests/docker-compose/docker-compose.yml
Alternatively, you can use curl
curl https://raw.githubusercontent.com/mlcraft-io/mlcraft/main/install-manifests/docker-compose/docker-compose.yml -o docker-compose.yml
NOTE: Ensure to review the environment variables in the docker-compose.yml file. Modify them as necessary.
Execute the following command to start Synmetrix along with a Postgres database for data storage.
docker-compose pull stack && docker-compose up -d
Verify if the containers are operational:
docker ps
Output:
CONTAINER ID IMAGE ... CREATED STATUS PORTS ...
c8f342d086f3 synmetrix/stack ... 1m ago Up 1m 80->8888/tcp ...
30ea14ddaa5e postgres:12 ... 1m ago Up 1m 5432/tcp
The installation of all dependencies will take approximately 5-7 minutes. Wait until you see the Synmetrix Stack is ready
message. You can view the logs using docker-compose logs -f
to confirm if the process has completed.
First, it's recommended to install Rosetta 2 on your Mac. This will allow Docker to run ARM64v8 containers. Since Docker version 4.25 it allows to run ARM64v8 containers natively, but some users still encounter issues without Rosetta installed.
For ARM64v8, Cubestore requires a specific version. Update the Cubestore version in the docker-compose file to include the -arm64v8
suffix. For instance, use v0.35.33-arm64v8
(refer to the Cubestore tags on Docker Hub for the latest version).
To run the docker-compose file for ARM64v8, use the following command:
docker-compose pull stack && CUBESTORE_VERSION=v0.35.33-arm64v8 docker-compose up -d
Video guide (MacOS, M3 Max processor):
- You can access Synmetrix at http://localhost/
- The GraphQL endpoint is located at http://localhost/v1/graphql
- The Admin Console (Hasura Console) can be found at http://localhost/console
- The Cube Swagger API can be found at http://localhost:4000/docs
-
Admin Console Access: Ensure to check
HASURA_GRAPHQL_ADMIN_SECRET
in the docker-compose file. This is mandatory for accessing the Admin Console. The default value isadminsecret
. Remember to modify this in a production environment. -
Environment Variables: Set up all necessary environment variables. Synmetrix will function with the default values, but certain features might not perform as anticipated.
-
Preloaded Seed Data: The project is equipped with preloaded seed data. Use the credentials below to sign in:
- Email:
[email protected]
- Password:
demodemo
This account is pre-configured with two demo datasources and their respective SQL API access. For SQL operations, you can use the following credentials with any PostgreSQL client tool such as DBeaver or TablePlus:
Host Port Database User Password localhost 15432 db demo_pg_user demo_pg_pass localhost 15432 db demo_clickhouse_user demo_clickhouse_pass - Email:
Demo: app.synmetrix.org
- Login:
[email protected]
- Password:
demodemo
Database type | Host | Port | Database | User | Password | SSL |
---|---|---|---|---|---|---|
ClickHouse | gh-api.clickhouse.tech | 443 | default | play | no password | true |
PostgreSQL | demo-db-examples.cube.dev | 5432 | ecom | cube | 12345 | false |
Synmetrix leverages Cube for flexible data modeling and transformations.
Cube implements a multi-stage SQL data modeling architecture:
- Raw data sits in a source database such as Postgres, MySQL, etc.
- The raw data is modeled into reusable data marts using Cube Data Models files. These models files allow defining metrics, dimensions, granularities and relationships.
- The models act as an abstraction layer between the raw data and application code.
- Cube then generates optimized analytical SQL queries against the raw data based on the model.
- The Cube Store distributed cache optimizes query performance by caching query results.
This modeling architecture makes it simple to create fast and complex analytical queries with Cube that are optimized to run against large datasets.
The unified data model can consolidate metrics from across different databases and systems, providing a consistent semantic layer for end users.
For production workloads, Synmetrix uses Cube Store as the caching and query execution layer.
Cube Store is a purpose-built database for operational analytics, optimized for fast aggregations and time series data. It provides:
- Distributed querying for scalability
- Advanced caching for fast queries
- columnar storage for analytics performance
- Integration with Cube for modeling
By leveraging Cube Store and Cube together, Synmetrix benefits from excellent analytics performance and flexibility in modeling metrics.
Repository | Description |
---|---|
mlcraft-io/mlcraft | Synmetrix Monorepo |
mlcraft-io/client-v2 | Synmetrix Client |
mlcraft-io/docs | Synmetrix Docs |
mlcraft-io/examples | Synmetrix Examples |
For general help using Synmetrix, please refer to the official Synmetrix documentation. For additional help, you can use one of these channels to ask a question:
- Slack / For live discussion with the Community and Synmetrix team
- GitHub / Bug reports, Contributions
- Twitter / Updates and news
- Youtube / Video tutorials and demos
Check out our roadmap to get informed on what we are currently working on, and what we have in mind for the next weeks, months and years.
The core Synmetrix is available under the Apache License 2.0 (Apache-2.0).
All other contents are available under the MIT License.
Component | Requirement |
---|---|
Processor (CPU) | 3.2 GHz or higher, modern processor with multi-threading and virtualization support. |
RAM | 8 GB or more to handle computational tasks and data processing. |
Disk Space | At least 30 GB of free space for software installation and storing working data. |
Network | Internet connectivity is required for cloud services and software updates. |
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for synmetrix
Similar Open Source Tools
synmetrix
Synmetrix is an open source data engineering platform and semantic layer for centralized metrics management. It provides a complete framework for modeling, integrating, transforming, aggregating, and distributing metrics data at scale. Key features include data modeling and transformations, semantic layer for unified data model, scheduled reports and alerts, versioning, role-based access control, data exploration, caching, and collaboration on metrics modeling. Synmetrix leverages Cube.js to consolidate metrics from various sources and distribute them downstream via a SQL API. Use cases include data democratization, business intelligence and reporting, embedded analytics, and enhancing accuracy in data handling and queries. The tool speeds up data-driven workflows from metrics definition to consumption by combining data engineering best practices with self-service analytics capabilities.
mlcraft
Synmetrix (prev. MLCraft) is an open source data engineering platform and semantic layer for centralized metrics management. It provides a complete framework for modeling, integrating, transforming, aggregating, and distributing metrics data at scale. Key features include data modeling and transformations, semantic layer for unified data model, scheduled reports and alerts, versioning, role-based access control, data exploration, caching, and collaboration on metrics modeling. Synmetrix leverages Cube (Cube.js) for flexible data models that consolidate metrics from various sources, enabling downstream distribution via a SQL API for integration into BI tools, reporting, dashboards, and data science. Use cases include data democratization, business intelligence, embedded analytics, and enhancing accuracy in data handling and queries. The tool speeds up data-driven workflows from metrics definition to consumption by combining data engineering best practices with self-service analytics capabilities.
OmAgent
OmAgent is an open-source agent framework designed to streamline the development of on-device multimodal agents. It enables agents to empower various hardware devices, integrates speed-optimized SOTA multimodal models, provides SOTA multimodal agent algorithms, and focuses on optimizing the end-to-end computing pipeline for real-time user interaction experience. Key features include easy connection to diverse devices, scalability, flexibility, and workflow orchestration. The architecture emphasizes graph-based workflow orchestration, native multimodality, and device-centricity, allowing developers to create bespoke intelligent agent programs.
kubesphere
KubeSphere is a distributed operating system for cloud-native application management, using Kubernetes as its kernel. It provides a plug-and-play architecture, allowing third-party applications to be seamlessly integrated into its ecosystem. KubeSphere is also a multi-tenant container platform with full-stack automated IT operation and streamlined DevOps workflows. It provides developer-friendly wizard web UI, helping enterprises to build out a more robust and feature-rich platform, which includes most common functionalities needed for enterprise Kubernetes strategy.
leapfrogai
LeapfrogAI is a self-hosted AI platform designed to be deployed in air-gapped resource-constrained environments. It brings sophisticated AI solutions to these environments by hosting all the necessary components of an AI stack, including vector databases, model backends, API, and UI. LeapfrogAI's API closely matches that of OpenAI, allowing tools built for OpenAI/ChatGPT to function seamlessly with a LeapfrogAI backend. It provides several backends for various use cases, including llama-cpp-python, whisper, text-embeddings, and vllm. LeapfrogAI leverages Chainguard's apko to harden base python images, ensuring the latest supported Python versions are used by the other components of the stack. The LeapfrogAI SDK provides a standard set of protobuffs and python utilities for implementing backends and gRPC. LeapfrogAI offers UI options for common use-cases like chat, summarization, and transcription. It can be deployed and run locally via UDS and Kubernetes, built out using Zarf packages. LeapfrogAI is supported by a community of users and contributors, including Defense Unicorns, Beast Code, Chainguard, Exovera, Hypergiant, Pulze, SOSi, United States Navy, United States Air Force, and United States Space Force.
ludwig
Ludwig is a declarative deep learning framework designed for scale and efficiency. It is a low-code framework that allows users to build custom AI models like LLMs and other deep neural networks with ease. Ludwig offers features such as optimized scale and efficiency, expert level control, modularity, and extensibility. It is engineered for production with prebuilt Docker containers, support for running with Ray on Kubernetes, and the ability to export models to Torchscript and Triton. Ludwig is hosted by the Linux Foundation AI & Data.
llm-twin-course
The LLM Twin Course is a free, end-to-end framework for building production-ready LLM systems. It teaches you how to design, train, and deploy a production-ready LLM twin of yourself powered by LLMs, vector DBs, and LLMOps good practices. The course is split into 11 hands-on written lessons and the open-source code you can access on GitHub. You can read everything and try out the code at your own pace.
lm.rs
lm.rs is a tool that allows users to run inference on Language Models locally on the CPU using Rust. It supports LLama3.2 1B and 3B models, with a WebUI also available. The tool provides benchmarks and download links for models and tokenizers, with recommendations for quantization options. Users can convert models from Google/Meta on huggingface using provided scripts. The tool can be compiled with cargo and run with various arguments for model weights, tokenizer, temperature, and more. Additionally, a backend for the WebUI can be compiled and run to connect via the web interface.
evidently
Evidently is an open-source Python library designed for evaluating, testing, and monitoring machine learning (ML) and large language model (LLM) powered systems. It offers a wide range of functionalities, including working with tabular, text data, and embeddings, supporting predictive and generative systems, providing over 100 built-in metrics for data drift detection and LLM evaluation, allowing for custom metrics and tests, enabling both offline evaluations and live monitoring, and offering an open architecture for easy data export and integration with existing tools. Users can utilize Evidently for one-off evaluations using Reports or Test Suites in Python, or opt for real-time monitoring through the Dashboard service.
airunner
AI Runner is a multi-modal AI interface that allows users to run open-source large language models and AI image generators on their own hardware. The tool provides features such as voice-based chatbot conversations, text-to-speech, speech-to-text, vision-to-text, text generation with large language models, image generation capabilities, image manipulation tools, utility functions, and more. It aims to provide a stable and user-friendly experience with security updates, a new UI, and a streamlined installation process. The application is designed to run offline on users' hardware without relying on a web server, offering a smooth and responsive user experience.
AgentBench
AgentBench is a benchmark designed to evaluate Large Language Models (LLMs) as autonomous agents in various environments. It includes 8 distinct environments such as Operating System, Database, Knowledge Graph, Digital Card Game, and Lateral Thinking Puzzles. The tool provides a comprehensive evaluation of LLMs' ability to operate as agents by offering Dev and Test sets for each environment. Users can quickly start using the tool by following the provided steps, configuring the agent, starting task servers, and assigning tasks. AgentBench aims to bridge the gap between LLMs' proficiency as agents and their practical usability.
ragas
Ragas is a framework that helps you evaluate your Retrieval Augmented Generation (RAG) pipelines. RAG denotes a class of LLM applications that use external data to augment the LLM’s context. There are existing tools and frameworks that help you build these pipelines but evaluating it and quantifying your pipeline performance can be hard. This is where Ragas (RAG Assessment) comes in. Ragas provides you with the tools based on the latest research for evaluating LLM-generated text to give you insights about your RAG pipeline. Ragas can be integrated with your CI/CD to provide continuous checks to ensure performance.
langkit
LangKit is an open-source text metrics toolkit for monitoring language models. It offers methods for extracting signals from input/output text, compatible with whylogs. Features include text quality, relevance, security, sentiment, toxicity analysis. Installation via PyPI. Modules contain UDFs for whylogs. Benchmarks show throughput on AWS instances. FAQs available.
torchtune
Torchtune is a PyTorch-native library for easily authoring, fine-tuning, and experimenting with LLMs. It provides native-PyTorch implementations of popular LLMs using composable and modular building blocks, easy-to-use and hackable training recipes for popular fine-tuning techniques, YAML configs for easily configuring training, evaluation, quantization, or inference recipes, and built-in support for many popular dataset formats and prompt templates to help you quickly get started with training.
edgeai
Embedded inference of Deep Learning models is quite challenging due to high compute requirements. TI’s Edge AI software product helps optimize and accelerate inference on TI’s embedded devices. It supports heterogeneous execution of DNNs across cortex-A based MPUs, TI’s latest generation C7x DSP, and DNN accelerator (MMA). The solution simplifies the product life cycle of DNN development and deployment by providing a rich set of tools and optimized libraries.
Adobe-Photoshop-ai-activation-2024
Adobe Photoshop Activation is a tool designed to activate the Adobe Photoshop program using valid credentials or key files. It also provides the functionality to generate valid serial keys for program activation and reset the program license to resolve activation issues. The tool is compatible with Windows 10 and Windows 11 operating systems, requires 4 GB RAM, 100 MB available space, and an internet connection for activation. Users can download the activator from the release page and contribute to the program by forking the repository, making changes, and creating pull requests. The project is licensed under the Apache License 2.0.
For similar tasks
langtrace
Langtrace is an open source observability software that lets you capture, debug, and analyze traces and metrics from all your applications that leverage LLM APIs, Vector Databases, and LLM-based Frameworks. It supports Open Telemetry Standards (OTEL), and the traces generated adhere to these standards. Langtrace offers both a managed SaaS version (Langtrace Cloud) and a self-hosted option. The SDKs for both Typescript/Javascript and Python are available, making it easy to integrate Langtrace into your applications. Langtrace automatically captures traces from various vendors, including OpenAI, Anthropic, Azure OpenAI, Langchain, LlamaIndex, Pinecone, and ChromaDB.
mlcraft
Synmetrix (prev. MLCraft) is an open source data engineering platform and semantic layer for centralized metrics management. It provides a complete framework for modeling, integrating, transforming, aggregating, and distributing metrics data at scale. Key features include data modeling and transformations, semantic layer for unified data model, scheduled reports and alerts, versioning, role-based access control, data exploration, caching, and collaboration on metrics modeling. Synmetrix leverages Cube (Cube.js) for flexible data models that consolidate metrics from various sources, enabling downstream distribution via a SQL API for integration into BI tools, reporting, dashboards, and data science. Use cases include data democratization, business intelligence, embedded analytics, and enhancing accuracy in data handling and queries. The tool speeds up data-driven workflows from metrics definition to consumption by combining data engineering best practices with self-service analytics capabilities.
synmetrix
Synmetrix is an open source data engineering platform and semantic layer for centralized metrics management. It provides a complete framework for modeling, integrating, transforming, aggregating, and distributing metrics data at scale. Key features include data modeling and transformations, semantic layer for unified data model, scheduled reports and alerts, versioning, role-based access control, data exploration, caching, and collaboration on metrics modeling. Synmetrix leverages Cube.js to consolidate metrics from various sources and distribute them downstream via a SQL API. Use cases include data democratization, business intelligence and reporting, embedded analytics, and enhancing accuracy in data handling and queries. The tool speeds up data-driven workflows from metrics definition to consumption by combining data engineering best practices with self-service analytics capabilities.
rtdl-num-embeddings
This repository provides the official implementation of the paper 'On Embeddings for Numerical Features in Tabular Deep Learning'. It focuses on transforming scalar continuous features into vectors before integrating them into the main backbone of tabular neural networks, showcasing improved performance. The embeddings for continuous features are shown to enhance the performance of tabular DL models and are applicable to various conventional backbones, offering efficiency comparable to Transformer-based models. The repository includes Python packages for practical usage, exploration of metrics and hyperparameters, and reproducing reported results for different algorithms and datasets.
VulBench
This repository contains materials for the paper 'How Far Have We Gone in Vulnerability Detection Using Large Language Model'. It provides a tool for evaluating vulnerability detection models using datasets such as d2a, ctf, magma, big-vul, and devign. Users can query the model 'Llama-2-7b-chat-hf' and store results in a SQLite database for analysis. The tool supports binary and multiple classification tasks with concurrency settings. Additionally, users can evaluate the results and generate a CSV file with metrics for each dataset and prompt type.
agentneo
AgentNeo is a Python package that provides functionalities for project, trace, dataset, experiment management. It allows users to authenticate, create projects, trace agents and LangGraph graphs, manage datasets, and run experiments with metrics. The tool aims to streamline AI project management and analysis by offering a comprehensive set of features.
easy-web-summarizer
A Python script leveraging advanced language models to summarize webpages and youtube videos directly from URLs. It integrates with LangChain and ChatOllama for state-of-the-art summarization, providing detailed summaries for quick understanding of web-based documents. The tool offers a command-line interface for easy use and integration into workflows, with plans to add support for translating to different languages and streaming text output on gradio. It can also be used via a web UI using the gradio app. The script is dockerized for easy deployment and is open for contributions to enhance functionality and capabilities.
bytedesk
Bytedesk is an AI-powered customer service and team instant messaging tool that offers features like enterprise instant messaging, online customer service, large model AI assistant, and local area network file transfer. It supports multi-level organizational structure, role management, permission management, chat record management, seating workbench, work order system, seat management, data dashboard, manual knowledge base, skill group management, real-time monitoring, announcements, sensitive words, CRM, report function, and integrated customer service workbench services. The tool is designed for team use with easy configuration throughout the company, and it allows file transfer across platforms using WiFi/hotspots without the need for internet connection.
For similar jobs
mlcraft
Synmetrix (prev. MLCraft) is an open source data engineering platform and semantic layer for centralized metrics management. It provides a complete framework for modeling, integrating, transforming, aggregating, and distributing metrics data at scale. Key features include data modeling and transformations, semantic layer for unified data model, scheduled reports and alerts, versioning, role-based access control, data exploration, caching, and collaboration on metrics modeling. Synmetrix leverages Cube (Cube.js) for flexible data models that consolidate metrics from various sources, enabling downstream distribution via a SQL API for integration into BI tools, reporting, dashboards, and data science. Use cases include data democratization, business intelligence, embedded analytics, and enhancing accuracy in data handling and queries. The tool speeds up data-driven workflows from metrics definition to consumption by combining data engineering best practices with self-service analytics capabilities.
synmetrix
Synmetrix is an open source data engineering platform and semantic layer for centralized metrics management. It provides a complete framework for modeling, integrating, transforming, aggregating, and distributing metrics data at scale. Key features include data modeling and transformations, semantic layer for unified data model, scheduled reports and alerts, versioning, role-based access control, data exploration, caching, and collaboration on metrics modeling. Synmetrix leverages Cube.js to consolidate metrics from various sources and distribute them downstream via a SQL API. Use cases include data democratization, business intelligence and reporting, embedded analytics, and enhancing accuracy in data handling and queries. The tool speeds up data-driven workflows from metrics definition to consumption by combining data engineering best practices with self-service analytics capabilities.
databerry
Chaindesk is a no-code platform that allows users to easily set up a semantic search system for personal data without technical knowledge. It supports loading data from various sources such as raw text, web pages, files (Word, Excel, PowerPoint, PDF, Markdown, Plain Text), and upcoming support for web sites, Notion, and Airtable. The platform offers a user-friendly interface for managing datastores, querying data via a secure API endpoint, and auto-generating ChatGPT Plugins for each datastore. Chaindesk utilizes a Vector Database (Qdrant), Openai's text-embedding-ada-002 for embeddings, and has a chunk size of 1024 tokens. The technology stack includes Next.js, Joy UI, LangchainJS, PostgreSQL, Prisma, and Qdrant, inspired by the ChatGPT Retrieval Plugin.
OAD
OAD is a powerful open-source tool for analyzing and visualizing data. It provides a user-friendly interface for exploring datasets, generating insights, and creating interactive visualizations. With OAD, users can easily import data from various sources, clean and preprocess data, perform statistical analysis, and create customizable visualizations to communicate findings effectively. Whether you are a data scientist, analyst, or researcher, OAD can help you streamline your data analysis workflow and uncover valuable insights from your data.
sqlcoder
Defog's SQLCoder is a family of state-of-the-art large language models (LLMs) designed for converting natural language questions into SQL queries. It outperforms popular open-source models like gpt-4 and gpt-4-turbo on SQL generation tasks. SQLCoder has been trained on more than 20,000 human-curated questions based on 10 different schemas, and the model weights are licensed under CC BY-SA 4.0. Users can interact with SQLCoder through the 'transformers' library and run queries using the 'sqlcoder launch' command in the terminal. The tool has been tested on NVIDIA GPUs with more than 16GB VRAM and Apple Silicon devices with some limitations. SQLCoder offers a demo on their website and supports quantized versions of the model for consumer GPUs with sufficient memory.
TableLLM
TableLLM is a large language model designed for efficient tabular data manipulation tasks in real office scenarios. It can generate code solutions or direct text answers for tasks like insert, delete, update, query, merge, and chart operations on tables embedded in spreadsheets or documents. The model has been fine-tuned based on CodeLlama-7B and 13B, offering two scales: TableLLM-7B and TableLLM-13B. Evaluation results show its performance on benchmarks like WikiSQL, Spider, and self-created table operation benchmark. Users can use TableLLM for code and text generation tasks on tabular data.
data-scientist-roadmap2024
The Data Scientist Roadmap2024 provides a comprehensive guide to mastering essential tools for data science success. It includes programming languages, machine learning libraries, cloud platforms, and concepts categorized by difficulty. The roadmap covers a wide range of topics from programming languages to machine learning techniques, data visualization tools, and DevOps/MLOps tools. It also includes web development frameworks and specific concepts like supervised and unsupervised learning, NLP, deep learning, reinforcement learning, and statistics. Additionally, it delves into DevOps tools like Airflow and MLFlow, data visualization tools like Tableau and Matplotlib, and other topics such as ETL processes, optimization algorithms, and financial modeling.
VMind
VMind is an open-source solution for intelligent visualization, providing an intelligent chart component based on LLM by VisActor. It allows users to create chart narrative works with natural language interaction, edit charts through dialogue, and export narratives as videos or GIFs. The tool is easy to use, scalable, supports various chart types, and offers one-click export functionality. Users can customize chart styles, specify themes, and aggregate data using LLM models. VMind aims to enhance efficiency in creating data visualization works through dialogue-based editing and natural language interaction.