airflow
Apache Airflow - A platform to programmatically author, schedule, and monitor workflows
Stars: 36709
Apache Airflow (or simply Airflow) is a platform to programmatically author, schedule, and monitor workflows. When workflows are defined as code, they become more maintainable, versionable, testable, and collaborative. Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command line utilities make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress, and troubleshoot issues when needed.
README:
Apache Airflow (or simply Airflow) is a platform to programmatically author, schedule, and monitor workflows.
When workflows are defined as code, they become more maintainable, versionable, testable, and collaborative.
Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command line utilities make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress, and troubleshoot issues when needed.
Table of contents
- Project Focus
- Principles
- Requirements
- Getting started
- Installing from PyPI
- Official source code
- Convenience packages
- User Interface
- Semantic versioning
- Version Life Cycle
- Support for Python and Kubernetes versions
- Base OS support for reference Airflow images
- Approach to dependencies of Airflow
- Contributing
- Voting Policy
- Who uses Apache Airflow?
- Who maintains Apache Airflow?
- What goes into the next release?
- Can I use the Apache Airflow logo in my presentation?
- Links
- Sponsors
Airflow works best with workflows that are mostly static and slowly changing. When the DAG structure is similar from one run to the next, it clarifies the unit of work and continuity. Other similar projects include Luigi, Oozie and Azkaban.
Airflow is commonly used to process data, but has the opinion that tasks should ideally be idempotent (i.e., results of the task will be the same, and will not create duplicated data in a destination system), and should not pass large quantities of data from one task to the next (though tasks can pass metadata using Airflow's XCom feature). For high-volume, data-intensive tasks, a best practice is to delegate to external services specializing in that type of work.
Airflow is not a streaming solution, but it is often used to process real-time data, pulling data off streams in batches.
- Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically.
- Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.
- Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built into the core of Airflow using the powerful Jinja templating engine.
- Scalable: Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers.
Apache Airflow is tested with:
Main version (dev) | Stable version (2.10.2) | |
---|---|---|
Python | 3.9, 3.10, 3.11, 3.12 | 3.8, 3.9, 3.10, 3.11, 3.12 |
Platform | AMD64/ARM64(*) | AMD64/ARM64(*) |
Kubernetes | 1.28, 1.29, 1.30, 1.31 | 1.27, 1.28, 1.29, 1.30 |
PostgreSQL | 12, 13, 14, 15, 16, 17 | 12, 13, 14, 15, 16 |
MySQL | 8.0, 8.4, Innovation | 8.0, 8.4, Innovation |
SQLite | 3.15.0+ | 3.15.0+ |
* Experimental
Note: MySQL 5.x versions are unable to or have limitations with running multiple schedulers -- please see the Scheduler docs. MariaDB is not tested/recommended.
Note: SQLite is used in Airflow tests. Do not use it in production. We recommend using the latest stable version of SQLite for local development.
Note: Airflow currently can be run on POSIX-compliant Operating Systems. For development, it is regularly
tested on fairly modern Linux Distros and recent versions of macOS.
On Windows you can run it via WSL2 (Windows Subsystem for Linux 2) or via Linux Containers.
The work to add Windows support is tracked via #10388, but
it is not a high priority. You should only use Linux-based distros as "Production" execution environment
as this is the only environment that is supported. The only distro that is used in our CI tests and that
is used in the Community managed DockerHub image is
Debian Bookworm
.
Visit the official Airflow website documentation (latest stable release) for help with installing Airflow, getting started, or walking through a more complete tutorial.
Note: If you're looking for documentation for the main branch (latest development branch): you can find it on s.apache.org/airflow-docs.
For more information on Airflow Improvement Proposals (AIPs), visit the Airflow Wiki.
Documentation for dependent projects like provider packages, Docker image, Helm Chart, you'll find it in the documentation index.
We publish Apache Airflow as apache-airflow
package in PyPI. Installing it however might be sometimes tricky
because Airflow is a bit of both a library and application. Libraries usually keep their dependencies open, and
applications usually pin them, but we should do neither and both simultaneously. We decided to keep
our dependencies as open as possible (in pyproject.toml
) so users can install different versions of libraries
if needed. This means that pip install apache-airflow
will not work from time to time or will
produce unusable Airflow installation.
To have repeatable installation, however, we keep a set of "known-to-be-working" constraint
files in the orphan constraints-main
and constraints-2-0
branches. We keep those "known-to-be-working"
constraints files separately per major/minor Python version.
You can use them as constraint files when installing Airflow from PyPI. Note that you have to specify
correct Airflow tag/version/branch and Python versions in the URL.
- Installing just Airflow:
Note: Only
pip
installation is currently officially supported.
While it is possible to install Airflow with tools like Poetry or
pip-tools, they do not share the same workflow as
pip
- especially when it comes to constraint vs. requirements management.
Installing via Poetry
or pip-tools
is not currently supported.
There are known issues with bazel
that might lead to circular dependencies when using it to install
Airflow. Please switch to pip
if you encounter such problems. Bazel
community works on fixing
the problem in this PR <https://github.com/bazelbuild/rules_python/pull/1166>
_ so it might be that
newer versions of bazel
will handle it.
If you wish to install Airflow using those tools, you should use the constraint files and convert them to the appropriate format and workflow that your tool requires.
pip install 'apache-airflow==2.10.2' \
--constraint "https://raw.githubusercontent.com/apache/airflow/constraints-2.10.2/constraints-3.9.txt"
- Installing with extras (i.e., postgres, google)
pip install 'apache-airflow[postgres,google]==2.10.2' \
--constraint "https://raw.githubusercontent.com/apache/airflow/constraints-2.10.2/constraints-3.9.txt"
For information on installing provider packages, check providers.
Apache Airflow is an Apache Software Foundation (ASF) project, and our official source code releases:
- Follow the ASF Release Policy
- Can be downloaded from the ASF Distribution Directory
- Are cryptographically signed by the release manager
- Are officially voted on by the PMC members during the Release Approval Process
Following the ASF rules, the source packages released must be sufficient for a user to build and test the release provided they have access to the appropriate platform and tools.
There are other ways of installing and using Airflow. Those are "convenience" methods - they are
not "official releases" as stated by the ASF Release Policy
, but they can be used by the users
who do not want to build the software themselves.
Those are - in the order of most common ways people install Airflow:
-
PyPI releases to install Airflow using standard
pip
tool -
Docker Images to install airflow via
docker
tool, use them in Kubernetes, Helm Charts,docker-compose
,docker swarm
, etc. You can read more about using, customising, and extending the images in the Latest docs, and learn details on the internals in the images document. - Tags in GitHub to retrieve the git project sources that were used to generate official source packages via git
All those artifacts are not official releases, but they are prepared using officially released sources. Some of those artifacts are "development" or "pre-release" ones, and they are clearly marked as such following the ASF Policy.
-
DAGs: Overview of all DAGs in your environment.
-
Grid: Grid representation of a DAG that spans across time.
-
Graph: Visualization of a DAG's dependencies and their current status for a specific run.
-
Task Duration: Total time spent on different tasks over time.
-
Gantt: Duration and overlap of a DAG.
-
Code: Quick way to view source code of a DAG.
As of Airflow 2.0.0, we support a strict SemVer approach for all packages released.
There are few specific rules that we agreed to that define details of versioning of the different packages:
- Airflow: SemVer rules apply to core airflow only (excludes any changes to providers). Changing limits for versions of Airflow dependencies is not a breaking change on its own.
-
Airflow Providers: SemVer rules apply to changes in the particular provider's code only.
SemVer MAJOR and MINOR versions for the packages are independent of the Airflow version.
For example,
google 4.1.0
andamazon 3.0.3
providers can happily be installed withAirflow 2.1.2
. If there are limits of cross-dependencies between providers and Airflow packages, they are present in providers asinstall_requires
limitations. We aim to keep backwards compatibility of providers with all previously released Airflow 2 versions but there will sometimes be breaking changes that might make some, or all providers, have minimum Airflow version specified. - Airflow Helm Chart: SemVer rules apply to changes in the chart only. SemVer MAJOR and MINOR versions for the chart are independent of the Airflow version. We aim to keep backwards compatibility of the Helm Chart with all released Airflow 2 versions, but some new features might only work starting from specific Airflow releases. We might however limit the Helm Chart to depend on minimal Airflow version.
- Airflow API clients: Their versioning is independent from Airflow versions. They follow their own SemVer rules for breaking changes and new features - which for example allows to change the way we generate the clients.
Apache Airflow version life cycle:
Version | Current Patch/Minor | State | First Release | Limited Support | EOL/Terminated |
---|---|---|---|---|---|
2 | 2.10.2 | Supported | Dec 17, 2020 | TBD | TBD |
1.10 | 1.10.15 | EOL | Aug 27, 2018 | Dec 17, 2020 | June 17, 2021 |
1.9 | 1.9.0 | EOL | Jan 03, 2018 | Aug 27, 2018 | Aug 27, 2018 |
1.8 | 1.8.2 | EOL | Mar 19, 2017 | Jan 03, 2018 | Jan 03, 2018 |
1.7 | 1.7.1.2 | EOL | Mar 28, 2016 | Mar 19, 2017 | Mar 19, 2017 |
Limited support versions will be supported with security and critical bug fix only. EOL versions will not get any fixes nor support. We always recommend that all users run the latest available minor release for whatever major version is in use. We highly recommend upgrading to the latest Airflow major release at the earliest convenient time and before the EOL date.
As of Airflow 2.0, we agreed to certain rules we follow for Python and Kubernetes support. They are based on the official release schedule of Python and Kubernetes, nicely summarized in the Python Developer's Guide and Kubernetes version skew policy.
-
We drop support for Python and Kubernetes versions when they reach EOL. Except for Kubernetes, a version stays supported by Airflow if two major cloud providers still provide support for it. We drop support for those EOL versions in main right after EOL date, and it is effectively removed when we release the first new MINOR (Or MAJOR if there is no new MINOR version) of Airflow. For example, for Python 3.9 it means that we will drop support in main right after 27.06.2023, and the first MAJOR or MINOR version of Airflow released after will not have it.
-
We support a new version of Python/Kubernetes in main after they are officially released, as soon as we make them work in our CI pipeline (which might not be immediate due to dependencies catching up with new versions of Python mostly) we release new images/support in Airflow based on the working CI setup.
-
This policy is best-effort which means there may be situations where we might terminate support earlier if circumstances require it.
The Airflow Community provides conveniently packaged container images that are published whenever we publish an Apache Airflow release. Those images contain:
- Base OS with necessary packages to install Airflow (stable Debian OS)
- Base Python installation in versions supported at the time of release for the MINOR version of Airflow released (so there could be different versions for 2.3 and 2.2 line for example)
- Libraries required to connect to supported Databases (again the set of databases supported depends on the MINOR version of Airflow)
- Predefined set of popular providers (for details see the Dockerfile).
- Possibility of building your own, custom image where the user can choose their own set of providers and libraries (see Building the image)
- In the future Airflow might also support a "slim" version without providers nor database clients installed
The version of the base OS image is the stable version of Debian. Airflow supports using all currently active stable versions - as soon as all Airflow dependencies support building, and we set up the CI pipeline for building and testing the OS version. Approximately 6 months before the end-of-regular support of a previous stable version of the OS, Airflow switches the images released to use the latest supported version of the OS.
For example switch from Debian Bullseye
to Debian Bookworm
has been implemented
before 2.8.0 release in October 2023 and Debian Bookworm
will be the only option supported as of
Airflow 2.10.0.
Users will continue to be able to build their images using stable Debian releases until the end of regular
support and building and verifying of the images happens in our CI but no unit tests were executed using
this image in the main
branch.
Airflow has a lot of dependencies - direct and transitive, also Airflow is both - library and application,
therefore our policies to dependencies has to include both - stability of installation of application,
but also ability to install newer version of dependencies for those users who develop DAGs. We developed
the approach where constraints
are used to make sure airflow can be installed in a repeatable way, while
we do not limit our users to upgrade most of the dependencies. As a result we decided not to upper-bound
version of Airflow dependencies by default, unless we have good reasons to believe upper-bounding them is
needed because of importance of the dependency as well as risk it involves to upgrade specific dependency.
We also upper-bound the dependencies that we know cause problems.
The constraint mechanism of ours takes care about finding and upgrading all the non-upper bound dependencies
automatically (providing that all the tests pass). Our main
build failures will indicate in case there
are versions of dependencies that break our tests - indicating that we should either upper-bind them or
that we should fix our code/tests to account for the upstream changes from those dependencies.
Whenever we upper-bound such a dependency, we should always comment why we are doing it - i.e. we should have a good reason why dependency is upper-bound. And we should also mention what is the condition to remove the binding.
Those dependencies are maintained in pyproject.toml
.
There are few dependencies that we decided are important enough to upper-bound them by default, as they are known to follow predictable versioning scheme, and we know that new versions of those are very likely to bring breaking changes. We commit to regularly review and attempt to upgrade to the newer versions of the dependencies as they are released, but this is manual process.
The important dependencies are:
-
SQLAlchemy
: upper-bound to specific MINOR version (SQLAlchemy is known to remove deprecations and introduce breaking changes especially that support for different Databases varies and changes at various speed) -
Alembic
: it is important to handle our migrations in predictable and performant way. It is developed together with SQLAlchemy. Our experience with Alembic is that it very stable in MINOR version -
Flask
: We are using Flask as the back-bone of our web UI and API. We know major version of Flask are very likely to introduce breaking changes across those so limiting it to MAJOR version makes sense -
werkzeug
: the library is known to cause problems in new versions. It is tightly coupled with Flask libraries, and we should update them together -
celery
: Celery is a crucial component of Airflow as it used for CeleryExecutor (and similar). Celery follows SemVer, so we should upper-bound it to the next MAJOR version. Also, when we bump the upper version of the library, we should make sure Celery Provider minimum Airflow version is updated. -
kubernetes
: Kubernetes is a crucial component of Airflow as it is used for the KubernetesExecutor (and similar). Kubernetes Python library follows SemVer, so we should upper-bound it to the next MAJOR version. Also, when we bump the upper version of the library, we should make sure Kubernetes Provider minimum Airflow version is updated.
The main part of the Airflow is the Airflow Core, but the power of Airflow also comes from a number of providers that extend the core functionality and are released separately, even if we keep them (for now) in the same monorepo for convenience. You can read more about the providers in the Providers documentation. We also have set of policies implemented for maintaining and releasing community-managed providers as well as the approach for community vs. 3rd party providers in the providers document.
Those extras
and providers
dependencies are maintained in provider.yaml
of each provider.
By default, we should not upper-bound dependencies for providers, however each provider's maintainer might decide to add additional limits (and justify them with comment).
Want to help build Apache Airflow? Check out our contributing documentation.
Official Docker (container) images for Apache Airflow are described in images.
- Commits need a +1 vote from a committer who is not the author
- When we do AIP voting, both PMC member's and committer's
+1s
are considered a binding vote.
We know about around 500 organizations that are using Apache Airflow (but there are likely many more) in the wild.
If you use Airflow - feel free to make a PR to add your organisation to the list.
Airflow is the work of the community, but the core committers/maintainers are responsible for reviewing and merging PRs as well as steering conversations around new feature requests. If you would like to become a maintainer, please review the Apache Airflow committer requirements.
Often you will see an issue that is assigned to specific milestone with Airflow version, or a PR that gets merged to the main branch and you might wonder which release the merged PR(s) will be released in or which release the fixed issues will be in. The answer to this is as usual - it depends on various scenarios. The answer is different for PRs and Issues.
To add a bit of context, we are following the Semver versioning scheme as described in
Airflow release process. More
details are explained in detail in this README under the Semantic versioning chapter, but
in short, we have MAJOR.MINOR.PATCH
versions of Airflow.
-
MAJOR
version is incremented in case of breaking changes -
MINOR
version is incremented when there are new features added -
PATCH
version is incremented when there are only bug-fixes and doc-only changes
Generally we release MINOR
versions of Airflow from a branch that is named after the MINOR version. For example
2.7.*
releases are released from v2-7-stable
branch, 2.8.*
releases are released from v2-8-stable
branch, etc.
-
Most of the time in our release cycle, when the branch for next
MINOR
branch is not yet created, all PRs merged tomain
(unless they get reverted), will find their way to the nextMINOR
release. For example if the last release is2.7.3
andv2-8-stable
branch is not created yet, the nextMINOR
release is2.8.0
and all PRs merged to main will be released in2.8.0
. However, some PRs (bug-fixes and doc-only changes) when merged, can be cherry-picked to currentMINOR
branch and released in the nextPATCHLEVEL
release. For example, if2.8.1
is already released and we are working on2.9.0dev
, then marking a PR with2.8.2
milestone means that it will be cherry-picked tov2-8-test
branch and released in2.8.2rc1
, and eventually in2.8.2
. -
When we prepare for the next
MINOR
release, we cut newv2-*-test
andv2-*-stable
branch and preparealpha
,beta
releases for the nextMINOR
version, the PRs merged to main will still be released in the nextMINOR
release untilrc
version is cut. This is happening because thev2-*-test
andv2-*-stable
branches are rebased on top of main when nextbeta
andrc
releases are prepared. For example, when we cut2.10.0beta1
version, anything merged to main before2.10.0rc1
is released, will find its way to 2.10.0rc1. -
Then, once we prepare the first RC candidate for the MINOR release, we stop moving the
v2-*-test
andv2-*-stable
branches and the PRs merged to main will be released in the nextMINOR
release. However, some PRs (bug-fixes and doc-only changes) when merged, can be cherry-picked to currentMINOR
branch and released in the nextPATCHLEVEL
release - for example when the last released version fromv2-10-stable
branch is2.10.0rc1
, some of the PRs from main can be marked as2.10.0
milestone by committers, the release manager will try to cherry-pick them into the release branch. If successful, they will be released in2.10.0rc2
and subsequently in2.10.0
. This also applies to subsequentPATCHLEVEL
versions. When for example2.10.1
is already released, marking a PR with2.10.2
milestone will mean that it will be cherry-picked tov2-10-stable
branch and released in2.10.2rc1
and eventually in2.10.2
.
The final decision about cherry-picking is made by the release manager.
Marking issues with a milestone is a bit different. Maintainers do not mark issues with a milestone usually, normally they are only marked in PRs. If PR linked to the issue (and "fixing it") gets merged and released in a specific version following the process described above, the issue will be automatically closed, no milestone will be set for the issue, you need to check the PR that fixed the issue to see which version it was released in.
However, sometimes maintainers mark issues with specific milestone, which means that the issue is important to become a candidate to take a look when the release is being prepared. Since this is an Open-Source project, where basically all contributors volunteer their time, there is no guarantee that specific issue will be fixed in specific version. We do not want to hold the release because some issue is not fixed, so in such case release manager will reassign such unfixed issues to the next milestone in case they are not fixed in time for the current release. Therefore, the milestone for issue is more of an intent that it should be looked at, than promise it will be fixed in the version.
More context and FAQ about the patchlevel release can be found in the
What goes into the next release document in the dev
folder of the
repository.
Yes! Be sure to abide by the Apache Foundation trademark policies and the Apache Airflow Brandbook. The most up-to-date logos are found in this repo and on the Apache Software Foundation website.
The CI infrastructure for Apache Airflow has been sponsored by:
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for airflow
Similar Open Source Tools
airflow
Apache Airflow (or simply Airflow) is a platform to programmatically author, schedule, and monitor workflows. When workflows are defined as code, they become more maintainable, versionable, testable, and collaborative. Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command line utilities make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress, and troubleshoot issues when needed.
airbroke
Airbroke is an open-source error catcher tool designed for modern web applications. It provides a PostgreSQL-based backend with an Airbrake-compatible HTTP collector endpoint and a React-based frontend for error management. The tool focuses on simplicity, maintaining a small database footprint even under heavy data ingestion. Users can ask AI about issues, replay HTTP exceptions, and save/manage bookmarks for important occurrences. Airbroke supports multiple OAuth providers for secure user authentication and offers occurrence charts for better insights into error occurrences. The tool can be deployed in various ways, including building from source, using Docker images, deploying on Vercel, Render.com, Kubernetes with Helm, or Docker Compose. It requires Node.js, PostgreSQL, and specific system resources for deployment.
chronon
Chronon is a platform that simplifies and improves ML workflows by providing a central place to define features, ensuring point-in-time correctness for backfills, simplifying orchestration for batch and streaming pipelines, offering easy endpoints for feature fetching, and guaranteeing and measuring consistency. It offers benefits over other approaches by enabling the use of a broad set of data for training, handling large aggregations and other computationally intensive transformations, and abstracting away the infrastructure complexity of data plumbing.
aici
The Artificial Intelligence Controller Interface (AICI) lets you build Controllers that constrain and direct output of a Large Language Model (LLM) in real time. Controllers are flexible programs capable of implementing constrained decoding, dynamic editing of prompts and generated text, and coordinating execution across multiple, parallel generations. Controllers incorporate custom logic during the token-by-token decoding and maintain state during an LLM request. This allows diverse Controller strategies, from programmatic or query-based decoding to multi-agent conversations to execute efficiently in tight integration with the LLM itself.
llm.c
LLM training in simple, pure C/CUDA. There is no need for 245MB of PyTorch or 107MB of cPython. For example, training GPT-2 (CPU, fp32) is ~1,000 lines of clean code in a single file. It compiles and runs instantly, and exactly matches the PyTorch reference implementation. I chose GPT-2 as the first working example because it is the grand-daddy of LLMs, the first time the modern stack was put together.
ezkl
EZKL is a library and command-line tool for doing inference for deep learning models and other computational graphs in a zk-snark (ZKML). It enables the following workflow: 1. Define a computational graph, for instance a neural network (but really any arbitrary set of operations), as you would normally in pytorch or tensorflow. 2. Export the final graph of operations as an .onnx file and some sample inputs to a .json file. 3. Point ezkl to the .onnx and .json files to generate a ZK-SNARK circuit with which you can prove statements such as: > "I ran this publicly available neural network on some private data and it produced this output" > "I ran my private neural network on some public data and it produced this output" > "I correctly ran this publicly available neural network on some public data and it produced this output" In the backend we use the collaboratively-developed Halo2 as a proof system. The generated proofs can then be verified with much less computational resources, including on-chain (with the Ethereum Virtual Machine), in a browser, or on a device.
Open-LLM-VTuber
Open-LLM-VTuber is a project in early stages of development that allows users to interact with Large Language Models (LLM) using voice commands and receive responses through a Live2D talking face. The project aims to provide a minimum viable prototype for offline use on macOS, Linux, and Windows, with features like long-term memory using MemGPT, customizable LLM backends, speech recognition, and text-to-speech providers. Users can configure the project to chat with LLMs, choose different backend services, and utilize Live2D models for visual representation. The project supports perpetual chat, offline operation, and GPU acceleration on macOS, addressing limitations of existing solutions on macOS.
FigStep
FigStep is a black-box jailbreaking algorithm against large vision-language models (VLMs). It feeds harmful instructions through the image channel and uses benign text prompts to induce VLMs to output contents that violate common AI safety policies. The tool highlights the vulnerability of VLMs to jailbreaking attacks, emphasizing the need for safety alignments between visual and textual modalities.
feedgen
FeedGen is an open-source tool that uses Google Cloud's state-of-the-art Large Language Models (LLMs) to improve product titles, generate more comprehensive descriptions, and fill missing attributes in product feeds. It helps merchants and advertisers surface and fix quality issues in their feeds using Generative AI in a simple and configurable way. The tool relies on GCP's Vertex AI API to provide both zero-shot and few-shot inference capabilities on GCP's foundational LLMs. With few-shot prompting, users can customize the model's responses towards their own data, achieving higher quality and more consistent output. FeedGen is an Apps Script based application that runs as an HTML sidebar in Google Sheets, allowing users to optimize their feeds with ease.
cluster-toolkit
Cluster Toolkit is an open-source software by Google Cloud for deploying AI/ML and HPC environments on Google Cloud. It allows easy deployment following best practices, with high customization and extensibility. The toolkit includes tutorials, examples, and documentation for various modules designed for AI/ML and HPC use cases.
gpt-subtrans
GPT-Subtrans is an open-source subtitle translator that utilizes large language models (LLMs) as translation services. It supports translation between any language pairs that the language model supports. Note that GPT-Subtrans requires an active internet connection, as subtitles are sent to the provider's servers for translation, and their privacy policy applies.
AirSane
AirSane is a SANE frontend and scanner server that supports Apple's AirScan protocol. It automatically detects scanners and publishes them through mDNS. Acquired images can be transferred in JPEG, PNG, and PDF/raster format. The tool is intended to be used with AirScan/eSCL clients such as Apple's Image Capture, sane-airscan on Linux, and the eSCL client built into Windows 10 and 11. It provides a simple web interface and encodes images on-the-fly to keep memory/storage demands low, making it suitable for devices like Raspberry Pi. Authentication and secure communication are supported in conjunction with a proxy server like nginx. AirSane has been reverse-engineered from Apple's AirScanScanner client communication protocol and offers a range of installation and configuration options for different operating systems.
amazon-transcribe-live-call-analytics
The Amazon Transcribe Live Call Analytics (LCA) with Agent Assist Sample Solution is designed to help contact centers assess and optimize caller experiences in real time. It leverages Amazon machine learning services like Amazon Transcribe, Amazon Comprehend, and Amazon SageMaker to transcribe and extract insights from contact center audio. The solution provides real-time supervisor and agent assist features, integrates with existing contact centers, and offers a scalable, cost-effective approach to improve customer interactions. The end-to-end architecture includes features like live call transcription, call summarization, AI-powered agent assistance, and real-time analytics. The solution is event-driven, ensuring low latency and seamless processing flow from ingested speech to live webpage updates.
atomic_agents
Atomic Agents is a modular and extensible framework designed for creating powerful applications. It follows the principles of Atomic Design, emphasizing small and single-purpose components. Leveraging Pydantic for data validation and serialization, the framework offers a set of tools and agents that can be combined to build AI applications. It depends on the Instructor package and supports various APIs like OpenAI, Cohere, Anthropic, and Gemini. Atomic Agents is suitable for developers looking to create AI agents with a focus on modularity and flexibility.
project_alice
Alice is an agentic workflow framework that integrates task execution and intelligent chat capabilities. It provides a flexible environment for creating, managing, and deploying AI agents for various purposes, leveraging a microservices architecture with MongoDB for data persistence. The framework consists of components like APIs, agents, tasks, and chats that interact to produce outputs through files, messages, task results, and URL references. Users can create, test, and deploy agentic solutions in a human-language framework, making it easy to engage with by both users and agents. The tool offers an open-source option, user management, flexible model deployment, and programmatic access to tasks and chats.
RouteLLM
RouteLLM is a framework for serving and evaluating LLM routers. It allows users to launch an OpenAI-compatible API that routes requests to the best model based on cost thresholds. Trained routers are provided to reduce costs while maintaining performance. Users can easily extend the framework, compare router performance, and calibrate cost thresholds. RouteLLM supports multiple routing strategies and benchmarks, offering a lightweight server and evaluation framework. It enables users to evaluate routers on benchmarks, calibrate thresholds, and modify model pairs. Contributions for adding new routers and benchmarks are welcome.
For similar tasks
airflow
Apache Airflow (or simply Airflow) is a platform to programmatically author, schedule, and monitor workflows. When workflows are defined as code, they become more maintainable, versionable, testable, and collaborative. Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command line utilities make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress, and troubleshoot issues when needed.
rill-flow
Rill Flow is a high-performance, scalable distributed workflow orchestration service that supports the execution of tens of millions of tasks per day with task execution latency less than 100ms. It is distributed and supports the orchestration and scheduling of heterogeneous distributed systems. Rill Flow is easy to use, supporting visual process orchestration and plug-in access. It is cloud native, allowing for cloud native container deployment and cloud native function orchestration. Additionally, Rill Flow supports rapid integration of LLM model services.
MateCat
Matecat is an enterprise-level, web-based CAT tool designed to make post-editing and outsourcing easy and to provide a complete set of features to manage and monitor translation projects.
uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.
airflow-chart
This Helm chart bootstraps an Airflow deployment on a Kubernetes cluster using the Helm package manager. The version of this chart does not correlate to any other component. Users should not expect feature parity between OSS airflow chart and the Astronomer airflow-chart for identical version numbers. To install this helm chart remotely (using helm 3) kubectl create namespace airflow helm repo add astronomer https://helm.astronomer.io helm install airflow --namespace airflow astronomer/airflow To install this repository from source sh kubectl create namespace airflow helm install --namespace airflow . Prerequisites: Kubernetes 1.12+ Helm 3.6+ PV provisioner support in the underlying infrastructure Installing the Chart: sh helm install --name my-release . The command deploys Airflow on the Kubernetes cluster in the default configuration. The Parameters section lists the parameters that can be configured during installation. Upgrading the Chart: First, look at the updating documentation to identify any backwards-incompatible changes. To upgrade the chart with the release name `my-release`: sh helm upgrade --name my-release . Uninstalling the Chart: To uninstall/delete the `my-release` deployment: sh helm delete my-release The command removes all the Kubernetes components associated with the chart and deletes the release. Updating DAGs: Bake DAGs in Docker image The recommended way to update your DAGs with this chart is to build a new docker image with the latest code (`docker build -t my-company/airflow:8a0da78 .`), push it to an accessible registry (`docker push my-company/airflow:8a0da78`), then update the Airflow pods with that image: sh helm upgrade my-release . --set images.airflow.repository=my-company/airflow --set images.airflow.tag=8a0da78 Docker Images: The Airflow image that are referenced as the default values in this chart are generated from this repository: https://github.com/astronomer/ap-airflow. Other non-airflow images used in this chart are generated from this repository: https://github.com/astronomer/ap-vendor. Parameters: The complete list of parameters supported by the community chart can be found on the Parameteres Reference page, and can be set under the `airflow` key in this chart. The following tables lists the configurable parameters of the Astronomer chart and their default values. | Parameter | Description | Default | | :----------------------------- | :-------------------------------------------------------------------------------------------------------- | :---------------------------- | | `ingress.enabled` | Enable Kubernetes Ingress support | `false` | | `ingress.acme` | Add acme annotations to Ingress object | `false` | | `ingress.tlsSecretName` | Name of secret that contains a TLS secret | `~` | | `ingress.webserverAnnotations` | Annotations added to Webserver Ingress object | `{}` | | `ingress.flowerAnnotations` | Annotations added to Flower Ingress object | `{}` | | `ingress.baseDomain` | Base domain for VHOSTs | `~` | | `ingress.auth.enabled` | Enable auth with Astronomer Platform | `true` | | `extraObjects` | Extra K8s Objects to deploy (these are passed through `tpl`). More about Extra Objects. | `[]` | | `sccEnabled` | Enable security context constraints required for OpenShift | `false` | | `authSidecar.enabled` | Enable authSidecar | `false` | | `authSidecar.repository` | The image for the auth sidecar proxy | `nginxinc/nginx-unprivileged` | | `authSidecar.tag` | The image tag for the auth sidecar proxy | `stable` | | `authSidecar.pullPolicy` | The K8s pullPolicy for the the auth sidecar proxy image | `IfNotPresent` | | `authSidecar.port` | The port the auth sidecar exposes | `8084` | | `gitSyncRelay.enabled` | Enables git sync relay feature. | `False` | | `gitSyncRelay.repo.url` | Upstream URL to the git repo to clone. | `~` | | `gitSyncRelay.repo.branch` | Branch of the upstream git repo to checkout. | `main` | | `gitSyncRelay.repo.depth` | How many revisions to check out. Leave as default `1` except in dev where history is needed. | `1` | | `gitSyncRelay.repo.wait` | Seconds to wait before pulling from the upstream remote. | `60` | | `gitSyncRelay.repo.subPath` | Path to the dags directory within the git repository. | `~` | Specify each parameter using the `--set key=value[,key=value]` argument to `helm install`. For example, sh helm install --name my-release --set executor=CeleryExecutor --set enablePodLaunching=false . Walkthrough using kind: Install kind, and create a cluster We recommend testing with Kubernetes 1.25+, example: sh kind create cluster --image kindest/node:v1.25.11 Confirm it's up: sh kubectl cluster-info --context kind-kind Add Astronomer's Helm repo sh helm repo add astronomer https://helm.astronomer.io helm repo update Create namespace + install the chart sh kubectl create namespace airflow helm install airflow -n airflow astronomer/airflow It may take a few minutes. Confirm the pods are up: sh kubectl get pods --all-namespaces helm list -n airflow Run `kubectl port-forward svc/airflow-webserver 8080:8080 -n airflow` to port-forward the Airflow UI to http://localhost:8080/ to confirm Airflow is working. Login as _admin_ and password _admin_. Build a Docker image from your DAGs: 1. Start a project using astro-cli, which will generate a Dockerfile, and load your DAGs in. You can test locally before pushing to kind with `astro airflow start`. `sh mkdir my-airflow-project && cd my-airflow-project astro dev init` 2. Then build the image: `sh docker build -t my-dags:0.0.1 .` 3. Load the image into kind: `sh kind load docker-image my-dags:0.0.1` 4. Upgrade Helm deployment: sh helm upgrade airflow -n airflow --set images.airflow.repository=my-dags --set images.airflow.tag=0.0.1 astronomer/airflow Extra Objects: This chart can deploy extra Kubernetes objects (assuming the role used by Helm can manage them). For Astronomer Cloud and Enterprise, the role permissions can be found in the Commander role. yaml extraObjects: - apiVersion: batch/v1beta1 kind: CronJob metadata: name: "{{ .Release.Name }}-somejob" spec: schedule: "*/10 * * * *" concurrencyPolicy: Forbid jobTemplate: spec: template: spec: containers: - name: myjob image: ubuntu command: - echo args: - hello restartPolicy: OnFailure Contributing: Check out our contributing guide! License: Apache 2.0 with Commons Clause
aioclock
An asyncio-based scheduling framework designed for execution of periodic tasks with integrated support for dependency injection, enabling efficient and flexible task management. Aioclock is 100% async, light, fast, and resource-friendly. It offers features like task scheduling, grouping, trigger definition, easy syntax, Pydantic v2 validation, and upcoming support for running the task dispatcher on a different process and backend support for horizontal scaling.
naas
Naas (Notebooks as a service) is an open source platform that enables users to create powerful data engines combining automation, analytics, and AI from Jupyter notebooks. It offers features like templates for automated data jobs and reports, drivers for data connectivity, and production-ready environment with scheduling and notifications. Naas aims to provide an alternative to Google Colab with enhanced low-code layers.
ezdata
Ezdata is a data processing and task scheduling system developed based on Python backend and Vue3 frontend. It supports managing multiple data sources, abstracting various data sources into a unified data model, integrating chatgpt for data question and answer functionality, enabling low-code data integration and visualization processing, scheduling single and dag tasks, and integrating a low-code data visualization dashboard system.
For similar jobs
lollms-webui
LoLLMs WebUI (Lord of Large Language Multimodal Systems: One tool to rule them all) is a user-friendly interface to access and utilize various LLM (Large Language Models) and other AI models for a wide range of tasks. With over 500 AI expert conditionings across diverse domains and more than 2500 fine tuned models over multiple domains, LoLLMs WebUI provides an immediate resource for any problem, from car repair to coding assistance, legal matters, medical diagnosis, entertainment, and more. The easy-to-use UI with light and dark mode options, integration with GitHub repository, support for different personalities, and features like thumb up/down rating, copy, edit, and remove messages, local database storage, search, export, and delete multiple discussions, make LoLLMs WebUI a powerful and versatile tool.
Azure-Analytics-and-AI-Engagement
The Azure-Analytics-and-AI-Engagement repository provides packaged Industry Scenario DREAM Demos with ARM templates (Containing a demo web application, Power BI reports, Synapse resources, AML Notebooks etc.) that can be deployed in a customer’s subscription using the CAPE tool within a matter of few hours. Partners can also deploy DREAM Demos in their own subscriptions using DPoC.
minio
MinIO is a High Performance Object Storage released under GNU Affero General Public License v3.0. It is API compatible with Amazon S3 cloud storage service. Use MinIO to build high performance infrastructure for machine learning, analytics and application data workloads.
mage-ai
Mage is an open-source data pipeline tool for transforming and integrating data. It offers an easy developer experience, engineering best practices built-in, and data as a first-class citizen. Mage makes it easy to build, preview, and launch data pipelines, and provides observability and scaling capabilities. It supports data integrations, streaming pipelines, and dbt integration.
AiTreasureBox
AiTreasureBox is a versatile AI tool that provides a collection of pre-trained models and algorithms for various machine learning tasks. It simplifies the process of implementing AI solutions by offering ready-to-use components that can be easily integrated into projects. With AiTreasureBox, users can quickly prototype and deploy AI applications without the need for extensive knowledge in machine learning or deep learning. The tool covers a wide range of tasks such as image classification, text generation, sentiment analysis, object detection, and more. It is designed to be user-friendly and accessible to both beginners and experienced developers, making AI development more efficient and accessible to a wider audience.
tidb
TiDB is an open-source distributed SQL database that supports Hybrid Transactional and Analytical Processing (HTAP) workloads. It is MySQL compatible and features horizontal scalability, strong consistency, and high availability.
airbyte
Airbyte is an open-source data integration platform that makes it easy to move data from any source to any destination. With Airbyte, you can build and manage data pipelines without writing any code. Airbyte provides a library of pre-built connectors that make it easy to connect to popular data sources and destinations. You can also create your own connectors using Airbyte's no-code Connector Builder or low-code CDK. Airbyte is used by data engineers and analysts at companies of all sizes to build and manage their data pipelines.
labelbox-python
Labelbox is a data-centric AI platform for enterprises to develop, optimize, and use AI to solve problems and power new products and services. Enterprises use Labelbox to curate data, generate high-quality human feedback data for computer vision and LLMs, evaluate model performance, and automate tasks by combining AI and human-centric workflows. The academic & research community uses Labelbox for cutting-edge AI research.