
cagent
Agent Builder and Runtime by Docker Engineering
Stars: 1197

cagent is a powerful and easy-to-use multi-agent runtime that orchestrates AI agents with specialized capabilities and tools, allowing users to quickly build, share, and run a team of virtual experts to solve complex problems. It supports creating agents with YAML configuration, improving agents with MCP servers, and delegating tasks to specialists. Key features include multi-agent architecture, rich tool ecosystem, smart delegation, YAML configuration, advanced reasoning tools, and support for multiple AI providers like OpenAI, Anthropic, Gemini, and Docker Model Runner.
README:
A powerful, easy to use, customizable multi-agent runtime that orchestrates AI agents with specialized capabilities and tools, and the interactions between agents.
cagent
lets you create and run intelligent AI agents, where each agent has
specialized knowledge, tools, and capabilities.
Think of it as allowing you to quickly build, share and run a team of virtual experts that collaborate to solve complex problems for you.
And it's dead easy to use!
cagent
is in active development, breaking changes are to be expected
Example basic_agent.yaml:
Creating agents with cagent is very simple. They are described in a short yaml file, like this one:
agents:
root:
model: openai/gpt-5-mini
description: A helpful AI assistant
instruction: |
You are a knowledgeable assistant that helps users with various tasks.
Be helpful, accurate, and concise in your responses.
Run it in a terminal with cagent run basic_agent.yaml
.
Many more examples can be found here!
cagent
supports MCP servers, enabling agents to use a wide variety of external tools and services.
It supports three transport types: stdio
, http
and sse
.
Giving an agent access to tools via MCP is a quick way to greatly improve its capabilities, the quality of its results and its general useful-ness.
Get started quickly with the Docker MCP Toolkit and catalog
Here, we're giving the same basic agent from the example above access to a containerized duckduckgo
mcp server and it's tools by using Docker's MCP Gateway:
agents:
root:
model: openai/gpt-5-mini
description: A helpful AI assistant
instruction: |
You are a knowledgeable assistant that helps users with various tasks.
Be helpful, accurate, and concise in your responses.
toolset:
- type: mcp
ref: docker:duckduckgo # stdio transport
When using a containerized server via the Docker MCP gateway, you can configure any required settings/secrets/authentication using the Docker MCP Toolkit in Docker Desktop.
Aside from the containerized MCP severs the Docker MCP Gateway provides, any standard MCP server can be used with cagent!
Here's an example similar to the above but adding read_file
and write_file
tools from the rust-mcp-filesystem
MCP server:
agents:
root:
model: openai/gpt-5-mini
description: A helpful AI assistant
instruction: |
You are a knowledgeable assistant that helps users with various tasks.
Be helpful, accurate, and concise in your responses. Write your search results to disk.
toolset:
- type: mcp
ref: docker:duckduckgo
- type: mcp
command: rust-mcp-filesystem # installed with `cargo install rust-mcp-filesystem`
args: ["--allow-write", "."]
tools: ["read_file", "write_file"] # Optional: specific tools only
env:
- "RUST_LOG=debug"
See the USAGE docs for more detailed information and examples
- 🏗️ Multi-agent architecture - Create specialized agents for different domains.
- 🔧 Rich tool ecosystem - Agents can use external tools and APIs via the MCP protocol.
- 🔄 Smart delegation - Agents can automatically route tasks to the most suitable specialist.
- 📝 YAML configuration - Declarative model and agent configuration.
- 💭 Advanced reasoning - Built-in "think", "todo" and "memory" tools for complex problem-solving.
- 🌐 Multiple AI providers - Support for OpenAI, Anthropic, Gemini and Docker Model Runner.
Prebuilt binaries for Windows, macOS and Linux can be found on the releases page of the project's GitHub repository
Once you've downloaded the appropriate binary for your platform, you may need to give it executable permissions. On macOS and Linux, this is done with the following command:
# linux amd64 build example
chmod +x /path/to/downloads/cagent-linux-amd64
You can then rename the binary to cagent
and configure your PATH
to be able to find it (configuration varies by platform).
Based on the models you configure your agents to use, you will need to set the corresponding provider API key accordingly, all theses keys are optional, you will likely need at least one of these, though:
# For OpenAI models
export OPENAI_API_KEY=your_api_key_here
# For Anthropic models
export ANTHROPIC_API_KEY=your_api_key_here
# For Gemini models
export GOOGLE_API_KEY=your_api_key_here
# Run an agent!
cagent run ./examples/pirate.yaml
# or specify a different starting agent from the config, useful for agent teams
cagent run ./examples/pirate.yaml -a root
# or run directly from an image reference here I'm pulling the pirate agent from the creek repository
cagent run creek/pirate
agents:
root:
model: claude
description: "Main coordinator agent that delegates tasks and manages workflow"
instruction: |
You are the root coordinator agent. Your job is to:
1. Understand user requests and break them down into manageable tasks
2. Delegate appropriate tasks to your helper agent
3. Coordinate responses and ensure tasks are completed properly
4. Provide final responses to the user
When you receive a request, analyze what needs to be done and decide whether to:
- Handle it yourself if it's simple
- Delegate to the helper agent if it requires specific assistance
- Break complex requests into multiple sub-tasks
sub_agents: ["helper"]
helper:
model: claude
description: "Assistant agent that helps with various tasks as directed by the root agent"
instruction: |
You are a helpful assistant agent. Your role is to:
1. Complete specific tasks assigned by the root agent
2. Provide detailed and accurate responses
3. Ask for clarification if tasks are unclear
4. Report back to the root agent with your results
Focus on being thorough and helpful in whatever task you're given.
models:
claude:
provider: anthropic
model: claude-sonnet-4-0
max_tokens: 64000
You'll find a curated list of agents examples, spread into 3 categories, Basic, Advanced and multi-agents in the /examples/
directory.
When using the dmr
provider, you can use the provider_opts
key for DMR runtime-specific (e.g. llama.cpp) options:
models:
local-qwen:
provider: dmr
model: ai/qwen3
max_tokens: 8192
provider_opts:
runtime_flags: ["--ngl=33", "--repeat-penalty=1.2", ...] # or comma/space-separated string
The default base_url cagent
will use for dmr providers is http://localhost:12434/engines/llama.cpp/v1
. DMR itself might need to be enabled via Docker Desktop's settings on MacOS and Windows, and via command line on Docker CE on Linux.
Using the command cagent new
you can quickly generate agents or multi-agent teams using a single prompt!
cagent
has a built-in agent dedicated to this task.
To use the feature, you must have an Anthropic, OpenAI or Google API key available in your environment, or specify a local model to run with DMR (Docker Model Runner).
You can choose what provider and model gets used by passing the --model provider/modelname
flag to cagent new
If --model
is unspecified, cagent new
will automatically choose between these 3 providers in order based on the first api key it finds in your environment.
export ANTHROPIC_API_KEY=your_api_key_here # first choice. default model claude-sonnet-4-0
export OPENAI_API_KEY=your_api_key_here # if anthropic key not set. default model gpt-5-mini
export GOOGLE_API_KEY=your_api_key_here # if anthropic and openai keys are not set. default model gemini-2.5-flash
--max-tokens
can be specified to override the context limit used.
When using DMR, the default is 16k to limit memory usage. With all other providers the default is 64k
--max-iterations
can be specified to override how many times the agent is allowed to loop when doing tool calling etc.
When using DMR, the default is set to 20 (small local models have the highest chance of getting confused and looping endlessly). For all other providers, the default is 0 (unlimited).
Example of provider, model, context size and max iterations overriding:
# Use GPT-5 via OpenAI
cagent new --model openai/gpt-5
# Use a local model (ai/gemma3-qat:12B) via DMR
cagent new --model dmr/ai/gemma3-qat:12B
# Override the max_tokens used during generation, default is 64k, 16k when using the dmr provider
cagent new --model openai/gpt-5-mini --max-tokens 32000
# Override max_iterations to limit how much the model can loop autonomously when tool calling
cagent new --model dmr/ai/gemma3n:2B-F16 --max-iterations 15
$ cagent new
------- Welcome to cagent! -------
(Ctrl+C to stop the agent or exit)
What should your agent/agent team do? (describe its purpose):
> I need an agent team that connects to <some-service> and does...
Agent configurations can be packaged and shared to Docker Hub using the cagent push
command
cagent push ./<agent-file>.yaml namespace/reponame
cagent
will automatically build an OCI image and push it to the desired repository using your Docker credentials
Pulling agents from Docker Hub is also just one cagent pull
command away.
cagent pull creek/pirate
cagent
will pull the image, extract the yaml file and place it in your working directory for ease of use.
cagent run creek.yaml
will run your newly pulled agent
More details on the usage and configuration of cagent
can be found in USAGE.md
We track anonymous usage data to improve the tool. See TELEMETRY.md for details.
Want to hack on cagent
, or help us fix bugs and build out some features? 🔧
Read the information on how to build from source and contribute to the project in CONTRIBUTING.md
A smart way to improve cagent
's codebase and feature set is to do it with the help of a cagent
agent!
We have one that we use and that you should use too:
cd cagent
cagent run ./golang_developer.yaml
This agent is an expert Golang developer specializing in the cagent multi-agent AI system architecture.
Ask it anything about cagent
. It can be questions about the current code or about
improvements to the code. It can also fix issues and implement new features!
We’d love to hear your thoughts on this project. You can find us on Slack
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for cagent
Similar Open Source Tools

cagent
cagent is a powerful and easy-to-use multi-agent runtime that orchestrates AI agents with specialized capabilities and tools, allowing users to quickly build, share, and run a team of virtual experts to solve complex problems. It supports creating agents with YAML configuration, improving agents with MCP servers, and delegating tasks to specialists. Key features include multi-agent architecture, rich tool ecosystem, smart delegation, YAML configuration, advanced reasoning tools, and support for multiple AI providers like OpenAI, Anthropic, Gemini, and Docker Model Runner.

voltagent
VoltAgent is an open-source TypeScript framework designed for building and orchestrating AI agents. It simplifies the development of AI agent applications by providing modular building blocks, standardized patterns, and abstractions. Whether you're creating chatbots, virtual assistants, automated workflows, or complex multi-agent systems, VoltAgent handles the underlying complexity, allowing developers to focus on defining their agents' capabilities and logic. The framework offers ready-made building blocks, such as the Core Engine, Multi-Agent Systems, Workflow Engine, Extensible Packages, Tooling & Integrations, Data Retrieval & RAG, Memory management, LLM Compatibility, and a Developer Ecosystem. VoltAgent empowers developers to build sophisticated AI applications faster and more reliably, avoiding repetitive setup and the limitations of simpler tools.

tools
Strands Agents Tools is a community-driven project that provides a powerful set of tools for your agents to use. It bridges the gap between large language models and practical applications by offering ready-to-use tools for file operations, system execution, API interactions, mathematical operations, and more. The tools cover a wide range of functionalities including file operations, shell integration, memory storage, web infrastructure, HTTP client, Slack client, Python execution, mathematical tools, AWS integration, image and video processing, audio output, environment management, task scheduling, advanced reasoning, swarm intelligence, dynamic MCP client, parallel tool execution, browser automation, diagram creation, RSS feed management, and computer automation.

ten-framework
TEN is an open-source ecosystem for creating, customizing, and deploying real-time conversational AI agents with multimodal capabilities including voice, vision, and avatar interactions. It includes various components like TEN Framework, TEN Turn Detection, TEN VAD, TEN Agent, TMAN Designer, and TEN Portal. Users can follow the provided guidelines to set up and customize their agents using TMAN Designer, run them locally or in Codespace, and deploy them with Docker or other cloud services. The ecosystem also offers community channels for developers to connect, contribute, and get support.

foundationallm
FoundationaLLM is a platform designed for deploying, scaling, securing, and governing generative AI in enterprises. It allows users to create AI agents grounded in enterprise data, integrate REST APIs, experiment with various large language models, centrally manage AI agents and their assets, deploy scalable vectorization data pipelines, enable non-developer users to create their own AI agents, control access with role-based access controls, and harness capabilities from Azure AI and Azure OpenAI. The platform simplifies integration with enterprise data sources, provides fine-grain security controls, scalability, extensibility, and addresses the challenges of delivering enterprise copilots or AI agents.

authed
Authed is an identity and authentication system designed for AI agents, providing unique identities, secure agent-to-agent authentication, and dynamic access policies. It eliminates the need for static credentials and human intervention in authentication workflows. The protocol is developer-first, open-source, and scalable, enabling AI agents to interact securely across different ecosystems and organizations.

ai-manus
AI Manus is a general-purpose AI Agent system that supports running various tools and operations in a sandbox environment. It offers deployment with minimal dependencies, supports multiple tools like Terminal, Browser, File, Web Search, and messaging tools, allocates separate sandboxes for tasks, manages session history, supports stopping and interrupting conversations, file upload and download, and is multilingual. The system also provides user login and authentication. The project primarily relies on Docker for development and deployment, with model capability requirements and recommended Deepseek and GPT models.

wingman
The LLM Platform, also known as Inference Hub, is an open-source tool designed to simplify the development and deployment of large language model applications at scale. It provides a unified framework for integrating and managing multiple LLM vendors, models, and related services through a flexible approach. The platform supports various LLM providers, document processing, RAG, advanced AI workflows, infrastructure operations, and flexible configuration using YAML files. Its modular and extensible architecture allows developers to plug in different providers and services as needed. Key components include completers, embedders, renderers, synthesizers, transcribers, document processors, segmenters, retrievers, summarizers, translators, AI workflows, tools, and infrastructure components. Use cases range from enterprise AI applications to scalable LLM deployment and custom AI pipelines. Integrations with LLM providers like OpenAI, Azure OpenAI, Anthropic, Google Gemini, AWS Bedrock, Groq, Mistral AI, xAI, Hugging Face, and more are supported.

composio
Composio is a production-ready toolset for AI agents that enables users to integrate AI agents with various agentic tools effortlessly. It provides support for over 100 tools across different categories, including popular softwares like GitHub, Notion, Linear, Gmail, Slack, and more. Composio ensures managed authorization with support for six different authentication protocols, offering better agentic accuracy and ease of use. Users can easily extend Composio with additional tools, frameworks, and authorization protocols. The toolset is designed to be embeddable and pluggable, allowing for seamless integration and consistent user experience.

agents
Cloudflare Agents is a framework for building intelligent, stateful agents that persist, think, and evolve at the edge of the network. It allows for maintaining persistent state and memory, real-time communication, processing and learning from interactions, autonomous operation at global scale, and hibernating when idle. The project is actively evolving with focus on core agent framework, WebSocket communication, HTTP endpoints, React integration, and basic AI chat capabilities. Future developments include advanced memory systems, WebRTC for audio/video, email integration, evaluation framework, enhanced observability, and self-hosting guide.

vibe-kanban
Vibe Kanban is a tool designed to streamline the process of planning, reviewing, and orchestrating tasks for human engineers working with AI coding agents. It allows users to easily switch between different coding agents, orchestrate their execution, review work, start dev servers, and track task statuses. The tool centralizes the configuration of coding agent MCP configs, providing a comprehensive solution for managing coding tasks efficiently.

suna
Kortix is an open-source platform designed to build, manage, and train AI agents for various tasks. It allows users to create autonomous agents, from general-purpose assistants to specialized automation tools. The platform offers capabilities such as browser automation, file management, web intelligence, system operations, API integrations, and agent building tools. Users can create custom agents tailored to specific domains, workflows, or business needs, enabling tasks like research & analysis, browser automation, file & document management, data processing & analysis, and system administration.

Shannon
Shannon is a battle-tested infrastructure for AI agents that solves problems at scale, such as runaway costs, non-deterministic failures, and security concerns. It offers features like intelligent caching, deterministic replay of workflows, time-travel debugging, WASI sandboxing, and hot-swapping between LLM providers. Shannon allows users to ship faster with zero configuration multi-agent setup, multiple AI patterns, time-travel debugging, and hot configuration changes. It is production-ready with features like WASI sandbox, token budget control, policy engine (OPA), and multi-tenancy. Shannon helps scale without breaking by reducing costs, being provider agnostic, observable by default, and designed for horizontal scaling with Temporal workflow orchestration.

req_llm
ReqLLM is a Req-based library for LLM interactions, offering a unified interface to AI providers through a plugin-based architecture. It brings composability and middleware advantages to LLM interactions, with features like auto-synced providers/models, typed data structures, ergonomic helpers, streaming capabilities, usage & cost extraction, and a plugin-based provider system. Users can easily generate text, structured data, embeddings, and track usage costs. The tool supports various AI providers like Anthropic, OpenAI, Groq, Google, and xAI, and allows for easy addition of new providers. ReqLLM also provides API key management, detailed documentation, and a roadmap for future enhancements.

jadx-mcp-server
JADX-MCP-SERVER is a standalone Python server that interacts with JADX-AI-MCP Plugin to analyze Android APKs using LLMs like Claude. It enables live communication with decompiled Android app context, uncovering vulnerabilities, parsing manifests, and facilitating reverse engineering effortlessly. The tool combines JADX-AI-MCP and JADX MCP SERVER to provide real-time reverse engineering support with LLMs, offering features like quick analysis, vulnerability detection, AI code modification, static analysis, and reverse engineering helpers. It supports various MCP tools for fetching class information, text, methods, fields, smali code, AndroidManifest.xml content, strings.xml file, resource files, and more. Tested on Claude Desktop, it aims to support other LLMs in the future, enhancing Android reverse engineering and APK modification tools connectivity for easier reverse engineering purely from vibes.

nodetool
NodeTool is a platform designed for AI enthusiasts, developers, and creators, providing a visual interface to access a variety of AI tools and models. It simplifies access to advanced AI technologies, offering resources for content creation, data analysis, automation, and more. With features like a visual editor, seamless integration with leading AI platforms, model manager, and API integration, NodeTool caters to both newcomers and experienced users in the AI field.
For similar tasks

Forza-Mods-AIO
Forza Mods AIO is a free and open-source tool that enhances the gaming experience in Forza Horizon 4 and 5. It offers a range of time-saving and quality-of-life features, making gameplay more enjoyable and efficient. The tool is designed to streamline various aspects of the game, improving user satisfaction and overall enjoyment.

hass-ollama-conversation
The Ollama Conversation integration adds a conversation agent powered by Ollama in Home Assistant. This agent can be used in automations to query information provided by Home Assistant about your house, including areas, devices, and their states. Users can install the integration via HACS and configure settings such as API timeout, model selection, context size, maximum tokens, and other parameters to fine-tune the responses generated by the AI language model. Contributions to the project are welcome, and discussions can be held on the Home Assistant Community platform.

crawl4ai
Crawl4AI is a powerful and free web crawling service that extracts valuable data from websites and provides LLM-friendly output formats. It supports crawling multiple URLs simultaneously, replaces media tags with ALT, and is completely free to use and open-source. Users can integrate Crawl4AI into Python projects as a library or run it as a standalone local server. The tool allows users to crawl and extract data from specified URLs using different providers and models, with options to include raw HTML content, force fresh crawls, and extract meaningful text blocks. Configuration settings can be adjusted in the `crawler/config.py` file to customize providers, API keys, chunk processing, and word thresholds. Contributions to Crawl4AI are welcome from the open-source community to enhance its value for AI enthusiasts and developers.

MaterialSearch
MaterialSearch is a tool for searching local images and videos using natural language. It provides functionalities such as text search for images, image search for images, text search for videos (providing matching video clips), image search for videos (searching for the segment in a video through a screenshot), image-text similarity calculation, and Pexels video search. The tool can be deployed through the source code or Docker image, and it supports GPU acceleration. Users can configure the tool through environment variables or a .env file. The tool is still under development, and configurations may change frequently. Users can report issues or suggest improvements through issues or pull requests.

tenere
Tenere is a TUI interface for Language Model Libraries (LLMs) written in Rust. It provides syntax highlighting, chat history, saving chats to files, Vim keybindings, copying text from/to clipboard, and supports multiple backends. Users can configure Tenere using a TOML configuration file, set key bindings, and use different LLMs such as ChatGPT, llama.cpp, and ollama. Tenere offers default key bindings for global and prompt modes, with features like starting a new chat, saving chats, scrolling, showing chat history, and quitting the app. Users can interact with the prompt in different modes like Normal, Visual, and Insert, with various key bindings for navigation, editing, and text manipulation.

openkore
OpenKore is a custom client and intelligent automated assistant for Ragnarok Online. It is a free, open source, and cross-platform program (Linux, Windows, and MacOS are supported). To run OpenKore, you need to download and extract it or clone the repository using Git. Configure OpenKore according to the documentation and run openkore.pl to start. The tool provides a FAQ section for troubleshooting, guidelines for reporting issues, and information about botting status on official servers. OpenKore is developed by a global team, and contributions are welcome through pull requests. Various community resources are available for support and communication. Users are advised to comply with the GNU General Public License when using and distributing the software.

QA-Pilot
QA-Pilot is an interactive chat project that leverages online/local LLM for rapid understanding and navigation of GitHub code repository. It allows users to chat with GitHub public repositories using a git clone approach, store chat history, configure settings easily, manage multiple chat sessions, and quickly locate sessions with a search function. The tool integrates with `codegraph` to view Python files and supports various LLM models such as ollama, openai, mistralai, and localai. The project is continuously updated with new features and improvements, such as converting from `flask` to `fastapi`, adding `localai` API support, and upgrading dependencies like `langchain` and `Streamlit` to enhance performance.

extension-gen-ai
The Looker GenAI Extension provides code examples and resources for building a Looker Extension that integrates with Vertex AI Large Language Models (LLMs). Users can leverage the power of LLMs to enhance data exploration and analysis within Looker. The extension offers generative explore functionality to ask natural language questions about data and generative insights on dashboards to analyze data by asking questions. It leverages components like BQML Remote Models, BQML Remote UDF with Vertex AI, and Custom Fine Tune Model for different integration options. Deployment involves setting up infrastructure with Terraform and deploying the Looker Extension by creating a Looker project, copying extension files, configuring BigQuery connection, connecting to Git, and testing the extension. Users can save example prompts and configure user settings for the extension. Development of the Looker Extension environment includes installing dependencies, starting the development server, and building for production.
For similar jobs

sweep
Sweep is an AI junior developer that turns bugs and feature requests into code changes. It automatically handles developer experience improvements like adding type hints and improving test coverage.

teams-ai
The Teams AI Library is a software development kit (SDK) that helps developers create bots that can interact with Teams and Microsoft 365 applications. It is built on top of the Bot Framework SDK and simplifies the process of developing bots that interact with Teams' artificial intelligence capabilities. The SDK is available for JavaScript/TypeScript, .NET, and Python.

ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.

classifai
Supercharge WordPress Content Workflows and Engagement with Artificial Intelligence. Tap into leading cloud-based services like OpenAI, Microsoft Azure AI, Google Gemini and IBM Watson to augment your WordPress-powered websites. Publish content faster while improving SEO performance and increasing audience engagement. ClassifAI integrates Artificial Intelligence and Machine Learning technologies to lighten your workload and eliminate tedious tasks, giving you more time to create original content that matters.

chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.

BricksLLM
BricksLLM is a cloud native AI gateway written in Go. Currently, it provides native support for OpenAI, Anthropic, Azure OpenAI and vLLM. BricksLLM aims to provide enterprise level infrastructure that can power any LLM production use cases. Here are some use cases for BricksLLM: * Set LLM usage limits for users on different pricing tiers * Track LLM usage on a per user and per organization basis * Block or redact requests containing PIIs * Improve LLM reliability with failovers, retries and caching * Distribute API keys with rate limits and cost limits for internal development/production use cases * Distribute API keys with rate limits and cost limits for students

uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.

griptape
Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. Griptape's core components include Structures (Agents, Pipelines, and Workflows), Tasks, Tools, Memory (Conversation Memory, Task Memory, and Meta Memory), Drivers (Prompt and Embedding Drivers, Vector Store Drivers, Image Generation Drivers, Image Query Drivers, SQL Drivers, Web Scraper Drivers, and Conversation Memory Drivers), Engines (Query Engines, Extraction Engines, Summary Engines, Image Generation Engines, and Image Query Engines), and additional components (Rulesets, Loaders, Artifacts, Chunkers, and Tokenizers). Griptape enables developers to create AI-powered applications with ease and efficiency.