eval-scope

eval-scope

A streamlined and customizable framework for efficient large model evaluation and performance benchmarking

Stars: 120

Visit
 screenshot

Eval-Scope is a framework for evaluating and improving large language models (LLMs). It provides a set of commonly used test datasets, metrics, and a unified model interface for generating and evaluating LLM responses. Eval-Scope also includes an automatic evaluator that can score objective questions and use expert models to evaluate complex tasks. Additionally, it offers a visual report generator, an arena mode for comparing multiple models, and a variety of other features to support LLM evaluation and development.

README:

English | ็ฎ€ไฝ“ไธญๆ–‡

PyPI - Downloads

๐Ÿ“– Table of Content

๐Ÿ“ Introduction

Large Language Model (LLMs) evaluation has become a critical process for assessing and improving LLMs. To better support the evaluation of large models, we propose the Eval-Scope framework, which includes the following components and features:

  • Pre-configured common benchmark datasets, including: MMLU, CMMLU, C-Eval, GSM8K, ARC, HellaSwag, TruthfulQA, MATH, HumanEval, etc.
  • Implementation of common evaluation metrics
  • Unified model integration, compatible with the generate and chat interfaces of multiple model series
  • Automatic evaluation (evaluator):
    • Automatic evaluation for objective questions
    • Implementation of complex task evaluation using expert models
  • Reports of evaluation generating
  • Arena mode
  • Visualization tools
  • Model Inference Performance Evaluation Tutorial
  • Support for OpenCompass as an Evaluation Backend, featuring advanced encapsulation and task simplification to easily submit tasks to OpenCompass for evaluation.
  • Supports VLMEvalKit as the evaluation backend. It initiates VLMEvalKit's multimodal evaluation tasks through Eval-Scope, supporting various multimodal models and datasets.
  • Full pipeline support: Seamlessly integrate with SWIFT to easily train and deploy model services, initiate evaluation tasks, view evaluation reports, and achieve an end-to-end large model development process.

Features

  • Lightweight, minimizing unnecessary abstractions and configurations
  • Easy to customize
    • New datasets can be integrated by simply implementing a single class
    • Models can be hosted on ModelScope, and evaluations can be initiated with just a model id
    • Supports deployment of locally hosted models
  • Visualization of evaluation reports
  • Rich evaluation metrics
  • Model-based automatic evaluation process, supporting multiple evaluation modes
    • Single mode: Expert models score individual models
    • Pairwise-baseline mode: Comparison with baseline models
    • Pairwise (all) mode: Pairwise comparison of all models

๐ŸŽ‰ News

  • [2024.07.26]: Supports VLMEvalKit as a third-party evaluation framework, initiating multimodal model evaluation tasks. User Guide ๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ
  • [2024.06.29]: Supports OpenCompass as a third-party evaluation framework. We have provided a high-level wrapper, supporting installation via pip and simplifying the evaluation task configuration. User Guide ๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ
  • [2024.06.13] Eval-Scope has been updated to version 0.3.x, which supports the ModelScope SWIFT framework for LLMs evaluation. ๐Ÿš€๐Ÿš€๐Ÿš€
  • [2024.06.13] We have supported the ToolBench as a third-party evaluation backend for Agents evaluation. ๐Ÿš€๐Ÿš€๐Ÿš€

๐Ÿ› ๏ธ Installation

Install with pip

  1. create conda environment
conda create -n eval-scope python=3.10
conda activate eval-scope
  1. Install Eval-Scope
pip install llmuses

Install from source code

  1. Download source code
git clone https://github.com/modelscope/eval-scope.git
  1. Install dependencies
cd eval-scope/
pip install -e .

๐Ÿš€ Quick Start

Simple Evaluation

command line with pip installation:

python -m llmuses.run --model ZhipuAI/chatglm3-6b --template-type chatglm3 --datasets arc --limit 100

command line with source code:

python llmuses/run.py --model ZhipuAI/chatglm3-6b --template-type chatglm3 --datasets mmlu ceval --limit 10

Parameters:

Evaluation with Model Arguments

python llmuses/run.py --model ZhipuAI/chatglm3-6b --template-type chatglm3 --model-args revision=v1.0.2,precision=torch.float16,device_map=auto --datasets mmlu ceval --use-cache true --limit 10
python llmuses/run.py --model qwen/Qwen-1_8B --generation-config do_sample=false,temperature=0.0 --datasets ceval --dataset-args '{"ceval": {"few_shot_num": 0, "few_shot_random": false}}' --limit 10

Parameters:

  • --model-args: Parameters of model: revision, precision, device_map, in format of key=value,key=value
  • --datasets: datasets list, separated by space
  • --use-cache: true or false, whether to use cache, default is false
  • --dataset-args: evaluation settings๏ผŒjson format๏ผŒkey is the dataset name๏ผŒvalue should be args for the dataset
    • --few_shot_num: few-shot data number
    • --few_shot_random: whether to use random few-shot data, default is true
    • --local_path: local dataset path
  • --limit: maximum number of samples to evaluate for each sub-dataset
  • --template-type: model template type, see Template Type List

Note: you can use following command to check the template type list of the model:

from llmuses.models.template import TemplateType
print(TemplateType.get_template_name_list())

Evaluation Backend

Eval-Scope supports using third-party evaluation frameworks to initiate evaluation tasks, which we call Evaluation Backend. Currently supported Evaluation Backend includes:

  • Native: Eval-Scope's own default evaluation framework, supporting various evaluation modes including single model evaluation, arena mode, and baseline model comparison mode.
  • OpenCompass: Initiate OpenCompass evaluation tasks through Eval-Scope. Lightweight, easy to customize, supports seamless integration with the LLM fine-tuning framework ModelScope Swift.
  • VLMEvalKit: Initiate VLMEvalKit multimodal evaluation tasks through Eval-Scope. Supports various multimodal models and datasets, and offers seamless integration with the LLM fine-tuning framework ModelScope Swift.
  • ThirdParty: The third-party task, e.g. ToolBench, you can contribute your own evaluation task to Eval-Scope as third-party backend.

OpenCompass Eval-Backend

To facilitate the use of the OpenCompass evaluation backend, we have customized the OpenCompass source code and named it ms-opencompass. This version includes optimizations for evaluation task configuration and execution based on the original version, and it supports installation via PyPI. This allows users to initiate lightweight OpenCompass evaluation tasks through Eval-Scope. Additionally, we have initially opened up API-based evaluation tasks in the OpenAI API format. You can deploy model services using ModelScope Swift, where swift deploy supports using vLLM to launch model inference services.

Installation
# Install with extra option
pip install llmuses[opencompass]
Data Preparation

Available datasets from OpenCompass backend:

'obqa', 'AX_b', 'siqa', 'nq', 'mbpp', 'winogrande', 'mmlu', 'BoolQ', 'cluewsc', 'ocnli', 'lambada', 'CMRC', 'ceval', 'csl', 'cmnli', 'bbh', 'ReCoRD', 'math', 'humaneval', 'eprstmt', 'WSC', 'storycloze', 'MultiRC', 'RTE', 'chid', 'gsm8k', 'AX_g', 'bustm', 'afqmc', 'piqa', 'lcsts', 'strategyqa', 'Xsum', 'agieval', 'ocnli_fc', 'C3', 'tnews', 'race', 'triviaqa', 'CB', 'WiC', 'hellaswag', 'summedits', 'GaokaoBench', 'ARC_e', 'COPA', 'ARC_c', 'DRCD'

Refer to OpenCompass datasets

You can use the following code to list all available datasets:

from llmuses.backend.opencompass import OpenCompassBackendManager
print(f'** All datasets from OpenCompass backend: {OpenCompassBackendManager.list_datasets()}')

Dataset download:

  • Option1: Download from ModelScope

    git clone https://www.modelscope.cn/datasets/swift/evalscope_resource.git
  • Option2: Download from OpenCompass GitHub

    wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-complete-20240207.zip

Unzip the file and set the path to the data directory in current work directory.

Model Serving

We use ModelScope swift to deploy model services, see: ModelScope Swift

# Install ms-swift
pip install ms-swift

# Deploy model
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type llama3-8b-instruct --port 8000
Model Evaluation

Refer to example: example_eval_swift_openai_api to configure and execute the evaluation task:

python examples/example_eval_swift_openai_api.py

VLMEvalKit Evaluation Backend

To facilitate the use of the VLMEvalKit evaluation backend, we have customized the VLMEvalKit source code and named it ms-vlmeval. This version encapsulates the configuration and execution of evaluation tasks based on the original version and supports installation via PyPI, allowing users to initiate lightweight VLMEvalKit evaluation tasks through Eval-Scope. Additionally, we support API-based evaluation tasks in the OpenAI API format. You can deploy multimodal model services using ModelScope swift.

Installation
# Install with additional options
pip install llmuses[vlmeval]
Data Preparation

Currently supported datasets include:

'COCO_VAL', 'MME', 'HallusionBench', 'POPE', 'MMBench_DEV_EN', 'MMBench_TEST_EN', 'MMBench_DEV_CN', 'MMBench_TEST_CN', 'MMBench', 'MMBench_CN', 'MMBench_DEV_EN_V11', 'MMBench_TEST_EN_V11', 'MMBench_DEV_CN_V11', 'MMBench_TEST_CN_V11', 'MMBench_V11', 'MMBench_CN_V11', 'SEEDBench_IMG', 'SEEDBench2', 'SEEDBench2_Plus', 'ScienceQA_VAL', 'ScienceQA_TEST', 'MMT-Bench_ALL_MI', 'MMT-Bench_ALL', 'MMT-Bench_VAL_MI', 'MMT-Bench_VAL', 'AesBench_VAL', 'AesBench_TEST', 'CCBench', 'AI2D_TEST', 'MMStar', 'RealWorldQA', 'MLLMGuard_DS', 'BLINK', 'OCRVQA_TEST', 'OCRVQA_TESTCORE', 'TextVQA_VAL', 'DocVQA_VAL', 'DocVQA_TEST', 'InfoVQA_ VAL', 'InfoVQA_TEST', 'ChartQA_VAL', 'ChartQA_TEST', 'MathVision', 'MathVision_MINI', 'MMMU_DEV_VAL', 'MMMU_TEST', 'OCRBench', 'MathVista_MINI', 'LLaVABench', 'MMVet', 'MTVQA_TEST', 'MMLongBench_DOC', 'VCR_EN_EASY_500', 'VCR_EN_EASY_100', 'VCR_EN_EASY_ALL', 'VCR_EN_HARD_500', 'VCR_EN_HARD_100', 'VCR_EN_HARD_ALL', 'VCR_ZH_EASY_500', 'VCR_ZH_EASY_100', 'VCR_Z H_EASY_ALL', 'VCR_ZH_HARD_500', 'VCR_ZH_HARD_100', 'VCR_ZH_HARD_ALL', 'MMBench-Video', 'Video-MME', 'MMBench_DEV_EN', 'MMBench_TEST_EN', 'MMBench_DEV_CN', 'MMBench_TEST_CN', 'MMBench', 'MMBench_CN', 'MMBench_DEV_EN_V11', 'MMBench_TEST_EN_V11', 'MMBench_DEV_CN_V11', 'MMBench_TEST_CN_V11', 'MM Bench_V11', 'MMBench_CN_V11', 'SEEDBench_IMG', 'SEEDBench2', 'SEEDBench2_Plus', 'ScienceQA_VAL', 'ScienceQA_TEST', 'MMT-Bench_ALL_MI', 'MMT-Bench_ALL', 'MMT-Bench_VAL_MI', 'MMT-Bench_VAL', 'AesBench_VAL', 'AesBench_TEST', 'CCBench', 'AI2D_TEST', 'MMStar', 'RealWorldQA', 'MLLMGuard_DS', 'BLINK'

For detailed information about the datasets, please refer to VLMEvalKit Supported Multimodal Evaluation Sets.

You can use the following to view the list of dataset names:

from llmuses.backend.vlm_eval_kit import VLMEvalKitBackendManager
print(f'** All models from VLMEvalKit backend: {VLMEvalKitBackendManager.list(list_supported_VLMs().keys())}')

If the dataset file does not exist locally when loading the dataset, it will be automatically downloaded to the ~/LMUData/ directory.

Model Evaluation

There are two ways to evaluate the model:

1. ModelScope Swift Deployment for Model Evaluation

Model Deployment Deploy the model service using ModelScope Swift. For detailed instructions, refer to: ModelScope Swift MLLM Deployment Guide

# Install ms-swift
pip install ms-swift
# Deploy the qwen-vl-chat multi-modal model service
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type qwen-vl-chat --model_id_or_path models/Qwen-VL-Chat

Model Evaluation Refer to the example file: example_eval_vlm_swift to configure the evaluation task. Execute the evaluation task:

python examples/example_eval_vlm_swift.py
2. Local Model Inference Evaluation

Model Inference Evaluation Skip the model service deployment and perform inference directly on the local machine. Refer to the example file: example_eval_vlm_local to configure the evaluation task. Execute the evaluation task:

python examples/example_eval_vlm_local.py
(Optional) Deploy Judge Model

Deploy the local language model as a judge/extractor using ModelScope swift. For details, refer to: ModelScope Swift LLM Deployment Guide. If no judge model is deployed, exact matching will be used.

# Deploy qwen2-7b as a judge
CUDA_VISIBLE_DEVICES=1 swift deploy --model_type qwen2-7b-instruct --model_id_or_path models/Qwen2-7B-Instruct --port 8866

You must configure the following environment variables for the judge model to be correctly invoked:

OPENAI_API_KEY=EMPTY
OPENAI_API_BASE=http://127.0.0.1:8866/v1/chat/completions # api_base for the judge model
LOCAL_LLM=qwen2-7b-instruct # model_id for the judge model
Model Evaluation

Refer to the example file: example_eval_vlm_swift to configure the evaluation task.

Execute the evaluation task:

python examples/example_eval_vlm_swift.py

Local Dataset

You can use local dataset to evaluate the model without internet connection.

1. Download and unzip the dataset

# set path to /path/to/workdir
wget https://modelscope.oss-cn-beijing.aliyuncs.com/open_data/benchmark/data.zip
unzip data.zip

2. Use local dataset to evaluate the model

python llmuses/run.py --model ZhipuAI/chatglm3-6b --template-type chatglm3 --datasets arc --dataset-hub Local --dataset-args '{"arc": {"local_path": "/path/to/workdir/data/arc"}}'  --limit 10

# Parameters:
# --dataset-hub: dataset sources: `ModelScope`, `Local`, `HuggingFace` (TO-DO)  default to `ModelScope`
# --dataset-args: json format, key is the dataset name, value should be args for the dataset

3. (Optional) Use local mode to submit evaluation task

# 1. Prepare the model local folder, the folder structure refers to chatglm3-6b, link: https://modelscope.cn/models/ZhipuAI/chatglm3-6b/files
# For example, download the model folder to the local path /path/to/ZhipuAI/chatglm3-6b

# 2. Execute the offline evaluation task
python llmuses/run.py --model /path/to/ZhipuAI/chatglm3-6b --template-type chatglm3 --datasets arc --dataset-hub Local --dataset-args '{"arc": {"local_path": "/path/to/workdir/data/arc"}}' --limit 10

Use run_task function

1. Configuration

import torch
from llmuses.constants import DEFAULT_ROOT_CACHE_DIR

# Example configuration
your_task_cfg = {
        'model_args': {'revision': None, 'precision': torch.float16, 'device_map': 'auto'},
        'generation_config': {'do_sample': False, 'repetition_penalty': 1.0, 'max_new_tokens': 512},
        'dataset_args': {},
        'dry_run': False,
        'model': 'ZhipuAI/chatglm3-6b',
        'template_type': 'chatglm3', 
        'datasets': ['arc', 'hellaswag'],
        'work_dir': DEFAULT_ROOT_CACHE_DIR,
        'outputs': DEFAULT_ROOT_CACHE_DIR,
        'mem_cache': False,
        'dataset_hub': 'ModelScope',
        'dataset_dir': DEFAULT_ROOT_CACHE_DIR,
        'stage': 'all',
        'limit': 10,
        'debug': False
    }

2. Execute the task

from llmuses.run import run_task

run_task(task_cfg=your_task_cfg)

Arena Mode

The Arena mode allows multiple candidate models to be evaluated through pairwise battles, and can choose to use the AI Enhanced Auto-Reviewer (AAR) automatic evaluation process or manual evaluation to obtain the evaluation report. The process is as follows:

1. Env preparation

a. Data preparation, the question data format refers to: llmuses/registry/data/question.jsonl
b. If you need to use the automatic evaluation process (AAR), you need to configure the relevant environment variables. Taking the GPT-4 based auto-reviewer process as an example, you need to configure the following environment variables:
    > export OPENAI_API_KEY=YOUR_OPENAI_API_KEY

2. Configuration files

Refer to : llmuses/registry/config/cfg_arena.yaml
Parameters:
    questions_file: question data path
    answers_gen: candidate model prediction result generation, supports multiple models, can control whether to enable the model through the enable parameter
    reviews_gen: evaluation result generation, currently defaults to using GPT-4 as the Auto-reviewer, can control whether to enable this step through the enable parameter
    elo_rating: ELO rating algorithm, can control whether to enable this step through the enable parameter, note that this step depends on the review_file must exist

3. Execute the script

#Usage:
cd llmuses

# dry-run mode
python llmuses/run_arena.py -c registry/config/cfg_arena.yaml --dry-run

# Execute the script
python llmuses/run_arena.py --c registry/config/cfg_arena.yaml

4. Visualization

# Usage:
streamlit run viz.py -- --review-file llmuses/registry/data/qa_browser/battle.jsonl --category-file llmuses/registry/data/qa_browser/category_mapping.yaml

Single Model Evaluation Mode

In this mode, we only score the output of a single model, without pairwise comparison.

1. Configuration file

Refer to: llmuses/registry/config/cfg_single.yaml
Parameters:
    questions_file: question data path
    answers_gen: candidate model prediction result generation, supports multiple models, can control whether to enable the model through the enable parameter
    reviews_gen: evaluation result generation, currently defaults to using GPT-4 as the Auto-reviewer, can control whether to enable this step through the enable parameter
    rating_gen: rating algorithm, can control whether to enable this step through the enable parameter, note that this step depends on the review_file must exist

2. Execute the script

#Example:
python llmuses/run_arena.py --c registry/config/cfg_single.yaml

Baseline Model Comparison Mode

In this mode, we select the baseline model, and compare other models with the baseline model for scoring. This mode can easily add new models to the Leaderboard (just need to run the scoring with the new model and the baseline model).

1. Configuration file

Refer to: llmuses/registry/config/cfg_pairwise_baseline.yaml
Parameters:
    questions_file: question data path
    answers_gen: candidate model prediction result generation, supports multiple models, can control whether to enable the model through the enable parameter
    reviews_gen: evaluation result generation, currently defaults to using GPT-4 as the Auto-reviewer, can control whether to enable this step through the enable parameter
    rating_gen: rating algorithm, can control whether to enable this step through the enable parameter, note that this step depends on the review_file must exist

2. Execute the script

# Example:
python llmuses/run_arena.py --c registry/config/cfg_pairwise_baseline.yaml

Datasets list

DatasetName Link Status Note
mmlu mmlu Active
ceval ceval Active
gsm8k gsm8k Active
arc arc Active
hellaswag hellaswag Active
truthful_qa truthful_qa Active
competition_math competition_math Active
humaneval humaneval Active
bbh bbh Active
race race Active
trivia_qa trivia_qa To be intergrated

Leaderboard

The LLM Leaderboard aims to provide an objective and comprehensive evaluation standard and platform to help researchers and developers understand and compare the performance of models on various tasks on ModelScope.

Leaderboard

Experiments and Results

Experiments

Model Serving Performance Evaluation

Perf

TO-DO List

  • โœ…Agents evaluation
  • [ ] vLLM
  • [ ] Distributed evaluating
  • [ ] Multi-modal evaluation
  • [ ] Benchmarks
    • [ ] GAIA
    • [ ] GPQA
    • [ ] MBPP
  • [ ] Auto-reviewer
    • [ ] Qwen-max

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for eval-scope

Similar Open Source Tools

For similar tasks

For similar jobs