rust-genai
Rust multiprovider generative AI client (Ollama, OpenAi, Anthropic, Groq, Gemini, Cohere, ...)
Stars: 154
genai is a multi-AI providers library for Rust that aims to provide a common and ergonomic single API to various generative AI providers such as OpenAI, Anthropic, Cohere, Ollama, and Gemini. It focuses on standardizing chat completion APIs across major AI services, prioritizing ergonomics and commonality. The library initially focuses on text chat APIs and plans to expand to support images, function calling, and more in the future versions. Version 0.1.x will have breaking changes in patches, while version 0.2.x will follow semver more strictly. genai does not provide a full representation of a given AI provider but aims to simplify the differences at a lower layer for ease of use.
README:
Currently supports natively: Ollama, OpenAI, Anthropic, groq, Gemini, Cohere (more to come)
# cargo.toml
genai = "=0.1.7" # Version lock for `0.1.x`
The goal of this library is to provide a common and ergonomic single API to many generative AI Providers, such as OpenAI, Anthropic, Cohere, Ollama.
-
IMPORTANT 1
0.1.x
will still have some breaking changes in patches, so make sure to lock your version, e.g.,genai = "=0.1.7"
. In short,0.1.x
can be considered "beta releases." Version0.2.x
will follow semver more strictly. -
IMPORTANT 2
genai
is focused on normalizing chat completion APIs across AI providers and is not intended to be a full representation of a given AI provider. For this, there are excellent libraries such as async-openai for OpenAI and ollama-rs for Ollama.
Examples | Thanks | Library Focus | Changelog | Provider Mapping: ChatOptions | MetaUsage
use genai::chat::printer::{print_chat_stream, PrintChatStreamOptions};
use genai::chat::{ChatMessage, ChatRequest};
use genai::Client;
const MODEL_OPENAI: &str = "gpt-4o-mini";
const MODEL_ANTHROPIC: &str = "claude-3-haiku-20240307";
const MODEL_COHERE: &str = "command-light";
const MODEL_GEMINI: &str = "gemini-1.5-flash-latest";
const MODEL_GROQ: &str = "gemma-7b-it";
const MODEL_OLLAMA: &str = "gemma:2b"; // sh: `ollama pull gemma:2b`
// NOTE: Those are the default environment keys for each AI Adapter Type.
// Can be customized, see `examples/c02-auth.rs`
const MODEL_AND_KEY_ENV_NAME_LIST: &[(&str, &str)] = &[
// -- de/activate models/providers
(MODEL_OPENAI, "OPENAI_API_KEY"),
(MODEL_ANTHROPIC, "ANTHROPIC_API_KEY"),
(MODEL_COHERE, "COHERE_API_KEY"),
(MODEL_GEMINI, "GEMINI_API_KEY"),
(MODEL_GROQ, "GROQ_API_KEY"),
(MODEL_OLLAMA, ""),
];
// NOTE: Model to AdapterKind (AI Provider) type mapping rule
// - starts_with "gpt" -> OpenAI
// - starts_with "claude" -> Anthropic
// - starts_with "command" -> Cohere
// - starts_with "gemini" -> Gemini
// - model in Groq models -> Groq
// - For anything else -> Ollama
//
// Can be customized, see `examples/c03-kind.rs`
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let question = "Why is the sky red?";
let chat_req = ChatRequest::new(vec![
// -- Messages (de/activate to see the differences)
ChatMessage::system("Answer in one sentence"),
ChatMessage::user(question),
]);
let client = Client::default();
let print_options = PrintChatStreamOptions::from_print_events(false);
for (model, env_name) in MODEL_AND_KEY_ENV_NAME_LIST {
// Skip if does not have the environment name set
if !env_name.is_empty() && std::env::var(env_name).is_err() {
println!("===== Skipping model: {model} (env var not set: {env_name})");
continue;
}
let adapter_kind = client.resolve_model_iden(model)?.adapter_kind;
println!("\n===== MODEL: {model} ({adapter_kind}) =====");
println!("\n--- Question:\n{question}");
println!("\n--- Answer:");
let chat_res = client.exec_chat(model, chat_req.clone(), None).await?;
println!("{}", chat_res.content_text_as_str().unwrap_or("NO ANSWER"));
println!("\n--- Answer: (streaming)");
let chat_res = client.exec_chat_stream(model, chat_req.clone(), None).await?;
print_chat_stream(chat_res, Some(&print_options)).await?;
println!();
}
Ok(())
}
- examples/c00-readme.rs - Quick overview code with multiple providers and streaming.
- examples/c01-conv.rs - Shows how to build a conversation flow.
-
examples/c02-auth.rs - Demonstrates how to provide a custom
AuthResolver
to provide auth data (i.e., for api_key) per adapter kind. -
examples/c03-kind.rs - Demonstrates how to provide a custom
AdapterKindResolver
to customize the "model name" to "adapter kind" mapping. -
examples/c04-chat-options.rs - Demonstrates how to set chat generation options such as
temperature
andmax_tokens
at the client level (for all requests) and per request level. - examples/c05-model-names.rs - Show how to get model names per AdapterKind.
-
genai code design & best practices
- Thanks to @omarshehab221 for de/serialize on structs PR #19
- Thanks to @tusharmath for make webc::Error PR #12
- Thanks to @giangndm for make stream is send PR #10
- Thanks to @stargazing-dino for PR #2 - implement groq completions
-
Focuses on standardizing chat completion APIs across major AI Services.
-
Native implementation, meaning no per-service SDKs.
- Reason: While there are some variations between all of the various APIs, they all follow the same pattern and high-level flow and constructs. Managing the differences at a lower layer is actually simpler and more cumulative accross services than doing sdks gymnastic.
-
Prioritizes ergonomics and commonality, with depth being secondary. (If you require complete client API, consider using async-openai and ollama-rs; they are both excellent and easy to use.)
-
Initially, this library will mostly focus on text chat API (images, or even function calling in the first stage).
-
The
0.1.x
version will work, but the APIs will change in the patch version, not following semver strictly. -
Version
0.2.x
will follow semver more strictly.
Property | OpenAI | Anthropic | Ollama | Groq | Gemini generationConfig.
|
Cohere |
---|---|---|---|---|---|---|
temperature |
temperature |
temperature |
temperature |
temperature |
temperature |
temperature |
max_tokens |
max_tokens |
max_tokens (default 1024) |
max_tokens |
max_tokens |
maxOutputTokens |
max_tokens |
top_p |
top_p |
top_p |
top_p |
top_p |
topP |
p |
Property | OpenAI usage.
|
Ollama usage.
|
Groq x_groq.usage.
|
Anthropic usage.
|
Gemini usageMetadata.
|
Cohere meta.tokens.
|
---|---|---|---|---|---|---|
input_tokens |
prompt_tokens |
prompt_tokens (1) |
prompt_tokens |
input_tokens (added) |
promptTokenCount (2) |
input_tokens |
output_tokens |
completion_tokens |
completion_tokens (1) |
completion_tokens |
output_tokens (added) |
candidatesTokenCount (2) |
output_tokens |
total_tokens |
total_tokens |
total_tokens (1) |
completion_tokens |
(computed) |
totalTokenCount (2) |
(computed) |
Note (1): At this point,
Ollama
does not emit input/output tokens when streaming due to the Ollama OpenAI compatibility layer limitation. (see ollama #4448 - Streaming Chat Completion via OpenAI API should support stream option to include Usage)
Note (2) Right now, with Gemini Stream API, it's not really clear if the usage for each event is cumulative or needs to be added. Currently, it appears to be cumulative (i.e., the last message has the total amount of input, output, and total tokens), so that will be the assumption. See possible tweet answer for more info.
- Will add more data on ChatResponse and ChatStream, especially metadata about usage.
- Add vision/image support to chat messages and responses.
- Add function calling support to chat messages and responses.
- Add
embbed
andembbed_batch
- Add the AWS Bedrock variants (e.g., Mistral, and Anthropic). Most of the work will be on "interesting" token signature scheme (without having to drag big SDKs, might be below feature).
- Add the Google VertexAI variants.
- (might) add the Azure OpenAI variant (not sure yet).
- crates.io: crates.io/crates/genai
- GitHub: github.com/jeremychone/rust-genai
- Sponsored by BriteSnow (Jeremy Chones's consulting company)
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for rust-genai
Similar Open Source Tools
rust-genai
genai is a multi-AI providers library for Rust that aims to provide a common and ergonomic single API to various generative AI providers such as OpenAI, Anthropic, Cohere, Ollama, and Gemini. It focuses on standardizing chat completion APIs across major AI services, prioritizing ergonomics and commonality. The library initially focuses on text chat APIs and plans to expand to support images, function calling, and more in the future versions. Version 0.1.x will have breaking changes in patches, while version 0.2.x will follow semver more strictly. genai does not provide a full representation of a given AI provider but aims to simplify the differences at a lower layer for ease of use.
agentops
AgentOps is a toolkit for evaluating and developing robust and reliable AI agents. It provides benchmarks, observability, and replay analytics to help developers build better agents. AgentOps is open beta and can be signed up for here. Key features of AgentOps include: - Session replays in 3 lines of code: Initialize the AgentOps client and automatically get analytics on every LLM call. - Time travel debugging: (coming soon!) - Agent Arena: (coming soon!) - Callback handlers: AgentOps works seamlessly with applications built using Langchain and LlamaIndex.
BetaML.jl
The Beta Machine Learning Toolkit is a package containing various algorithms and utilities for implementing machine learning workflows in multiple languages, including Julia, Python, and R. It offers a range of supervised and unsupervised models, data transformers, and assessment tools. The models are implemented entirely in Julia and are not wrappers for third-party models. Users can easily contribute new models or request implementations. The focus is on user-friendliness rather than computational efficiency, making it suitable for educational and research purposes.
langcheck
LangCheck is a Python library that provides a suite of metrics and tools for evaluating the quality of text generated by large language models (LLMs). It includes metrics for evaluating text fluency, sentiment, toxicity, factual consistency, and more. LangCheck also provides tools for visualizing metrics, augmenting data, and writing unit tests for LLM applications. With LangCheck, you can quickly and easily assess the quality of LLM-generated text and identify areas for improvement.
candle-vllm
Candle-vllm is an efficient and easy-to-use platform designed for inference and serving local LLMs, featuring an OpenAI compatible API server. It offers a highly extensible trait-based system for rapid implementation of new module pipelines, streaming support in generation, efficient management of key-value cache with PagedAttention, and continuous batching. The tool supports chat serving for various models and provides a seamless experience for users to interact with LLMs through different interfaces.
yomitoku
YomiToku is a Japanese-focused AI document image analysis engine that provides full-text OCR and layout analysis capabilities for images. It recognizes, extracts, and converts text information and figures in images. It includes 4 AI models trained on Japanese datasets for tasks such as detecting text positions, recognizing text strings, analyzing layouts, and recognizing table structures. The models are specialized for Japanese document images, supporting recognition of over 7000 Japanese characters and analyzing layout structures specific to Japanese documents. It offers features like layout analysis, table structure analysis, and reading order estimation to extract information from document images without disrupting their semantic structure. YomiToku supports various output formats such as HTML, markdown, JSON, and CSV, and can also extract figures, tables, and images from documents. It operates efficiently in GPU environments, enabling fast and effective analysis of document transcriptions without requiring high-end GPUs.
cellseg_models.pytorch
cellseg-models.pytorch is a Python library built upon PyTorch for 2D cell/nuclei instance segmentation models. It provides multi-task encoder-decoder architectures and post-processing methods for segmenting cell/nuclei instances. The library offers high-level API to define segmentation models, open-source datasets for training, flexibility to modify model components, sliding window inference, multi-GPU inference, benchmarking utilities, regularization techniques, and example notebooks for training and finetuning models with different backbones.
ax
Ax is a Typescript library that allows users to build intelligent agents inspired by agentic workflows and the Stanford DSP paper. It seamlessly integrates with multiple Large Language Models (LLMs) and VectorDBs to create RAG pipelines or collaborative agents capable of solving complex problems. The library offers advanced features such as streaming validation, multi-modal DSP, and automatic prompt tuning using optimizers. Users can easily convert documents of any format to text, perform smart chunking, embedding, and querying, and ensure output validation while streaming. Ax is production-ready, written in Typescript, and has zero dependencies.
obsei
Obsei is an open-source, low-code, AI powered automation tool that consists of an Observer to collect unstructured data from various sources, an Analyzer to analyze the collected data with various AI tasks, and an Informer to send analyzed data to various destinations. The tool is suitable for scheduled jobs or serverless applications as all Observers can store their state in databases. Obsei is still in alpha stage, so caution is advised when using it in production. The tool can be used for social listening, alerting/notification, automatic customer issue creation, extraction of deeper insights from feedbacks, market research, dataset creation for various AI tasks, and more based on creativity.
openapi
The `@samchon/openapi` repository is a collection of OpenAPI types and converters for various versions of OpenAPI specifications. It includes an 'emended' OpenAPI v3.1 specification that enhances clarity by removing ambiguous and duplicated expressions. The repository also provides an application composer for LLM (Large Language Model) function calling from OpenAPI documents, allowing users to easily perform LLM function calls based on the Swagger document. Conversions to different versions of OpenAPI documents are also supported, all based on the emended OpenAPI v3.1 specification. Users can validate their OpenAPI documents using the `typia` library with `@samchon/openapi` types, ensuring compliance with standard specifications.
LLMTSCS
LLMLight is a novel framework that employs Large Language Models (LLMs) as decision-making agents for Traffic Signal Control (TSC). The framework leverages the advanced generalization capabilities of LLMs to engage in a reasoning and decision-making process akin to human intuition for effective traffic control. LLMLight has been demonstrated to be remarkably effective, generalizable, and interpretable against various transportation-based and RL-based baselines on nine real-world and synthetic datasets.
AnglE
AnglE is a library for training state-of-the-art BERT/LLM-based sentence embeddings with just a few lines of code. It also serves as a general sentence embedding inference framework, allowing for inferring a variety of transformer-based sentence embeddings. The library supports various loss functions such as AnglE loss, Contrastive loss, CoSENT loss, and Espresso loss. It provides backbones like BERT-based models, LLM-based models, and Bi-directional LLM-based models for training on single or multi-GPU setups. AnglE has achieved significant performance on various benchmarks and offers official pretrained models for both BERT-based and LLM-based models.
mediapipe-rs
MediaPipe-rs is a Rust library designed for MediaPipe tasks on WasmEdge WASI-NN. It offers easy-to-use low-code APIs similar to mediapipe-python, with low overhead and flexibility for custom media input. The library supports various tasks like object detection, image classification, gesture recognition, and more, including TfLite models, TF Hub models, and custom models. Users can create task instances, run sessions for pre-processing, inference, and post-processing, and speed up processing by reusing sessions. The library also provides support for audio tasks using audio data from symphonia, ffmpeg, or raw audio. Users can choose between CPU, GPU, or TPU devices for processing.
PDFMathTranslate
PDFMathTranslate is a tool designed for translating scientific papers and conducting bilingual comparisons. It preserves formulas, charts, table of contents, and annotations. The tool supports multiple languages and diverse translation services. It provides a command-line tool, interactive user interface, and Docker deployment. Users can try the application through online demos. The tool offers various installation methods including command-line, portable, graphic user interface, and Docker. Advanced options allow users to customize translation settings. Additionally, the tool supports secondary development through APIs for Python and HTTP. Future plans include parsing layout with DocLayNet based models, fixing page rotation and format issues, supporting non-PDF/A files, and integrating plugins for Zotero and Obsidian.
GPTQModel
GPTQModel is an easy-to-use LLM quantization and inference toolkit based on the GPTQ algorithm. It provides support for weight-only quantization and offers features such as dynamic per layer/module flexible quantization, sharding support, and auto-heal quantization errors. The toolkit aims to ensure inference compatibility with HF Transformers, vLLM, and SGLang. It offers various model supports, faster quant inference, better quality quants, and security features like hash check of model weights. GPTQModel also focuses on faster quantization, improved quant quality as measured by PPL, and backports bug fixes from AutoGPTQ.
ai00_server
AI00 RWKV Server is an inference API server for the RWKV language model based upon the web-rwkv inference engine. It supports VULKAN parallel and concurrent batched inference and can run on all GPUs that support VULKAN. No need for Nvidia cards!!! AMD cards and even integrated graphics can be accelerated!!! No need for bulky pytorch, CUDA and other runtime environments, it's compact and ready to use out of the box! Compatible with OpenAI's ChatGPT API interface. 100% open source and commercially usable, under the MIT license. If you are looking for a fast, efficient, and easy-to-use LLM API server, then AI00 RWKV Server is your best choice. It can be used for various tasks, including chatbots, text generation, translation, and Q&A.
For similar tasks
rust-genai
genai is a multi-AI providers library for Rust that aims to provide a common and ergonomic single API to various generative AI providers such as OpenAI, Anthropic, Cohere, Ollama, and Gemini. It focuses on standardizing chat completion APIs across major AI services, prioritizing ergonomics and commonality. The library initially focuses on text chat APIs and plans to expand to support images, function calling, and more in the future versions. Version 0.1.x will have breaking changes in patches, while version 0.2.x will follow semver more strictly. genai does not provide a full representation of a given AI provider but aims to simplify the differences at a lower layer for ease of use.
LLaMa2lang
This repository contains convenience scripts to finetune LLaMa3-8B (or any other foundation model) for chat towards any language (that isn't English). The rationale behind this is that LLaMa3 is trained on primarily English data and while it works to some extent for other languages, its performance is poor compared to English.
SiriLLama
Siri LLama is an Apple shortcut that allows users to access locally running LLMs through Siri or the shortcut UI on any Apple device connected to the same network as the host machine. It utilizes Langchain and supports open source models from Ollama or Fireworks AI. Users can easily set up and configure the tool to interact with various language models for chat and multimodal tasks. The tool provides a convenient way to leverage the power of language models through Siri or the shortcut interface, enhancing user experience and productivity.
text-generation-webui-telegram_bot
The text-generation-webui-telegram_bot is a wrapper and extension for llama.cpp, exllama, or transformers, providing additional functionality for the oobabooga/text-generation-webui tool. It enhances Telegram chat with features like buttons, prefixes, and voice/image generation. Users can easily install and run the tool as a standalone app or in extension mode, enabling seamless integration with the text-generation-webui tool. The tool offers various features such as chat templates, session history, character loading, model switching during conversation, voice generation, auto-translate, and more. It supports different bot modes for personalized interactions and includes configurations for running in different environments like Google Colab. Additionally, users can customize settings, manage permissions, and utilize various prefixes to enhance the chat experience.
whetstone.chatgpt
Whetstone.ChatGPT is a simple light-weight library that wraps the Open AI API with support for dependency injection. It supports features like GPT 4, GPT 3.5 Turbo, chat completions, audio transcription and translation, vision completions, files, fine tunes, images, embeddings, moderations, and response streaming. The library provides a video walkthrough of a Blazor web app built on it and includes examples such as a command line bot. It offers quickstarts for dependency injection, chat completions, completions, file handling, fine tuning, image generation, and audio transcription.
pg_vectorize
pg_vectorize is a Postgres extension that automates text to embeddings transformation, enabling vector search and LLM applications with minimal function calls. It integrates with popular LLMs, provides workflows for vector search and RAG, and automates Postgres triggers for updating embeddings. The tool is part of the VectorDB Stack on Tembo Cloud, offering high-level APIs for easy initialization and search.
gemini-api-quickstart
This repository contains a simple Python Flask App utilizing the Google AI Gemini API to explore multi-modal capabilities. It provides a basic UI and Flask backend for easy integration and testing. The app allows users to interact with the AI model through chat messages, making it a great starting point for developers interested in AI-powered applications.
ai21-python
The AI21 Labs Python SDK is a comprehensive tool for interacting with the AI21 API. It provides functionalities for chat completions, conversational RAG, token counting, error handling, and support for various cloud providers like AWS, Azure, and Vertex. The SDK offers both synchronous and asynchronous usage, along with detailed examples and documentation. Users can quickly get started with the SDK to leverage AI21's powerful models for various natural language processing tasks.
For similar jobs
promptflow
**Prompt flow** is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality.
deepeval
DeepEval is a simple-to-use, open-source LLM evaluation framework specialized for unit testing LLM outputs. It incorporates various metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., and runs locally on your machine for evaluation. It provides a wide range of ready-to-use evaluation metrics, allows for creating custom metrics, integrates with any CI/CD environment, and enables benchmarking LLMs on popular benchmarks. DeepEval is designed for evaluating RAG and fine-tuning applications, helping users optimize hyperparameters, prevent prompt drifting, and transition from OpenAI to hosting their own Llama2 with confidence.
MegaDetector
MegaDetector is an AI model that identifies animals, people, and vehicles in camera trap images (which also makes it useful for eliminating blank images). This model is trained on several million images from a variety of ecosystems. MegaDetector is just one of many tools that aims to make conservation biologists more efficient with AI. If you want to learn about other ways to use AI to accelerate camera trap workflows, check out our of the field, affectionately titled "Everything I know about machine learning and camera traps".
leapfrogai
LeapfrogAI is a self-hosted AI platform designed to be deployed in air-gapped resource-constrained environments. It brings sophisticated AI solutions to these environments by hosting all the necessary components of an AI stack, including vector databases, model backends, API, and UI. LeapfrogAI's API closely matches that of OpenAI, allowing tools built for OpenAI/ChatGPT to function seamlessly with a LeapfrogAI backend. It provides several backends for various use cases, including llama-cpp-python, whisper, text-embeddings, and vllm. LeapfrogAI leverages Chainguard's apko to harden base python images, ensuring the latest supported Python versions are used by the other components of the stack. The LeapfrogAI SDK provides a standard set of protobuffs and python utilities for implementing backends and gRPC. LeapfrogAI offers UI options for common use-cases like chat, summarization, and transcription. It can be deployed and run locally via UDS and Kubernetes, built out using Zarf packages. LeapfrogAI is supported by a community of users and contributors, including Defense Unicorns, Beast Code, Chainguard, Exovera, Hypergiant, Pulze, SOSi, United States Navy, United States Air Force, and United States Space Force.
llava-docker
This Docker image for LLaVA (Large Language and Vision Assistant) provides a convenient way to run LLaVA locally or on RunPod. LLaVA is a powerful AI tool that combines natural language processing and computer vision capabilities. With this Docker image, you can easily access LLaVA's functionalities for various tasks, including image captioning, visual question answering, text summarization, and more. The image comes pre-installed with LLaVA v1.2.0, Torch 2.1.2, xformers 0.0.23.post1, and other necessary dependencies. You can customize the model used by setting the MODEL environment variable. The image also includes a Jupyter Lab environment for interactive development and exploration. Overall, this Docker image offers a comprehensive and user-friendly platform for leveraging LLaVA's capabilities.
carrot
The 'carrot' repository on GitHub provides a list of free and user-friendly ChatGPT mirror sites for easy access. The repository includes sponsored sites offering various GPT models and services. Users can find and share sites, report errors, and access stable and recommended sites for ChatGPT usage. The repository also includes a detailed list of ChatGPT sites, their features, and accessibility options, making it a valuable resource for ChatGPT users seeking free and unlimited GPT services.
TrustLLM
TrustLLM is a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. The document explains how to use the trustllm python package to help you assess the performance of your LLM in trustworthiness more quickly. For more details about TrustLLM, please refer to project website.
AI-YinMei
AI-YinMei is an AI virtual anchor Vtuber development tool (N card version). It supports fastgpt knowledge base chat dialogue, a complete set of solutions for LLM large language models: [fastgpt] + [one-api] + [Xinference], supports docking bilibili live broadcast barrage reply and entering live broadcast welcome speech, supports Microsoft edge-tts speech synthesis, supports Bert-VITS2 speech synthesis, supports GPT-SoVITS speech synthesis, supports expression control Vtuber Studio, supports painting stable-diffusion-webui output OBS live broadcast room, supports painting picture pornography public-NSFW-y-distinguish, supports search and image search service duckduckgo (requires magic Internet access), supports image search service Baidu image search (no magic Internet access), supports AI reply chat box [html plug-in], supports AI singing Auto-Convert-Music, supports playlist [html plug-in], supports dancing function, supports expression video playback, supports head touching action, supports gift smashing action, supports singing automatic start dancing function, chat and singing automatic cycle swing action, supports multi scene switching, background music switching, day and night automatic switching scene, supports open singing and painting, let AI automatically judge the content.