![HuatuoGPT-o1](/statics/github-mark.png)
HuatuoGPT-o1
Medical o1, Towards medical complex reasoning with LLMs
Stars: 480
![screenshot](/screenshots_githubs/FreedomIntelligence-HuatuoGPT-o1.jpg)
HuatuoGPT-o1 is a medical language model designed for advanced medical reasoning. It can identify mistakes, explore alternative strategies, and refine answers. The model leverages verifiable medical problems and a specialized medical verifier to guide complex reasoning trajectories and enhance reasoning through reinforcement learning. The repository provides access to models, data, and code for HuatuoGPT-o1, allowing users to deploy the model for medical reasoning tasks.
README:
📃 Paper |🤗 HuatuoGPT-o1-7B |🤗 HuatuoGPT-o1-8B | 🤗 HuatuoGPT-o1-70B | 📚 Data
Hello! Welcome to the repository for HuatuoGPT-o1!
HuatuoGPT-o1 is a medical LLM designed for advanced medical reasoning. It can identify mistakes, explore alternative strategies, and refine its answers. By leveraging verifiable medical problems and a specialized medical verifier, it advances reasoning through:
- Using the verifier to guide the search for a complex reasoning trajectory for fine-tuning LLMs.
- Applying reinforcement learning (PPO) with verifier-based rewards to enhance complex reasoning further.
We open-sourced our models, data, and code here.
- Model Access
Backbone | Supported Languages | Link | |
---|---|---|---|
HuatuoGPT-o1-8B | LLaMA-3.1-8B | English | HF Link |
HuatuoGPT-o1-70B | LLaMA-3.1-70B | English | HF Link |
HuatuoGPT-o1-7B | Qwen2.5-7B | English & Chinese | HF Link |
HuatuoGPT-o1-72B | Qwen2.5-72B | English & Chinese | HF Link |
- Deploy
HuatuoGPT-o1 can be used just like Llama-3.1-8B-Instruct
. You can deploy it with tools like vllm or Sglang, or perform direct inference:
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-8B",torch_dtype="auto",device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-8B")
input_text = "How to stop a cough?"
messages = [{"role": "user", "content": input_text}]
inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True
), return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=2048)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
HuatuoGPT-o1 adopts a thinks-before-it-answers approach, with outputs formatted as:
## Thinking
[Reasoning process]
## Final Response
[Output]
- Data Access
Data | Description | Link |
---|---|---|
Medical Verifiable Problems | Open-ended medical problems sourced from challenging medical exams, paired with ground-truth answers. | Link |
SFT Data in Stage 1 | Fine-tuning data generated using GPT-4o, including complex chains of thought (Complex CoT) and output (Response). | Link |
- Data Construction
We provide scripts to construct verifiable problems and searching reasoning paths.
1. Constructing Verifiable Problems from Multi-choice Questions.
python construct_verifiable_medical_problems.py --data_path data/demo_data.json --filter_data --model_name gpt-4o --api_key [your api key]
2. Searching Complex Reasoning Paths for SFT
python search_for_complex_reasoning_path.py --data_path data/demo_data.json --efficient_search True --max_search_attempts 1 --max_search_depth 2 --model_name gpt-4o --api_key [your api key]
- Stage 1: Supervised Fine-Tuning (SFT)
Fine-tune the model on an 8-GPU setup:
accelerate launch --config_file ./configs/deepspeed_zero3.yaml \
--num_processes 8 \
--num_machines 1 \
--machine_rank 0 \
--deepspeed_multinode_launcher standard SFT_stage1.py \
--model_path [meta-llama/Llama-3.1-8B-Instruct] \
--data_path [FreedomIntelligence/medical-o1-reasoning-SFT]
- Stage 2: Reinforcement Learning (RL)
We provide a simple PPO script using the trl library. Below is an example for training an 8B model with PPO on an 8-GPU A100 machine. Ensure you first download our medical verifier as the reward model.
accelerate launch \
--num_processes 8 \
--num_machines 1 \
--machine_rank 0 \
--config_file ./configs/deepspeed_zero3.yaml \
--deepspeed_multinode_launcher standard RL_stage2.py \
--model_name_or_path [FreedomIntelligence/HuatuoGPT-o1-8B] \
--reward_model_path [FreedomIntelligence/medical_o1_verifier_3B] \
--value_model_path [meta-llama/Llama-3.2-3B-Instruct] \
--dataset_name [FreedomIntelligence/medical-o1-verifiable-problem]\
--response_length 1300 \
--temperature 0.5 \
--local_rollout_forward_batch_size 8 \
--num_ppo_epochs 3 \
--num_mini_batches 1 \
--total_episodes 20000 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--bf16 True \
--output_dir ./ckpts \
--save_strategy steps \
--save_step 20 \
--save_total_limit 1 \
--eval_strategy steps \
--eval_steps 20 \
--kl_coef 0.03 \
--learning_rate 5e-7 \
--warmup_ratio 0.05 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--run_name ppo_medical_o1_8B \
--num_sample_generations -1 \
--report_to wandb
- You first need to install Sglang. After installation, deploy the model you want to test using Sglang with the following command:
log_num=0
model_name="FreedomIntelligence/HuatuoGPT-o1-8B" # Path to the model you are deploying
port=28${log_num}35
CUDA_VISIBLE_DEVICES=0 python -m sglang.launch_server --model-path $model_name --port $port --mem-fraction-static 0.8 --dp 1 --tp 1 > sglang${log_num}.log 2>&1 &
- Wait for the model to be deployed. After deployment, you can run the following code for evaluation. We use prompts that allow the model to respond freely. We find that the extracted results are consistently reliable and broadly cover the intended scope. You can also set the
--strict_prompt
option to use stricter prompts for more precise answer extraction.
python evaluation/eval.py --model_name $model_name --eval_file evaluation/data/eval_data.json --port $port
- After completing the evaluation, run the following code to stop the Sglang service and release GPU memory.
bash evaluation/kill_sglang_server.sh
The evaluation code above can be used to test most models supported by Sglang.
Explore our HuatuoGPT series:
- HuatuoGPT: Taming Language Models to Be a Doctor
- HuatuoGPT-II: One-stage Training for Medical Adaptation of LLMs
- HuatuoGPT-Vision: Injecting Medical Visual Knowledge into Multimodal LLMs at Scale
- CoD (Chain-of-Diagnosis): Towards an Interpretable Medical Agent using Chain of Diagnosis
- HuatuoGPT-o1: Towards Medical Complex Reasoning with LLMs
@misc{chen2024huatuogpto1medicalcomplexreasoning,
title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs},
author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang},
year={2024},
eprint={2412.18925},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.18925},
}
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for HuatuoGPT-o1
Similar Open Source Tools
![HuatuoGPT-o1 Screenshot](/screenshots_githubs/FreedomIntelligence-HuatuoGPT-o1.jpg)
HuatuoGPT-o1
HuatuoGPT-o1 is a medical language model designed for advanced medical reasoning. It can identify mistakes, explore alternative strategies, and refine answers. The model leverages verifiable medical problems and a specialized medical verifier to guide complex reasoning trajectories and enhance reasoning through reinforcement learning. The repository provides access to models, data, and code for HuatuoGPT-o1, allowing users to deploy the model for medical reasoning tasks.
![Starmoon Screenshot](/screenshots_githubs/StarmoonAI-Starmoon.jpg)
Starmoon
Starmoon is an affordable, compact AI-enabled device that can understand and respond to your emotions with empathy. It offers supportive conversations and personalized learning assistance. The device is cost-effective, voice-enabled, open-source, compact, and aims to reduce screen time. Users can assemble the device themselves using off-the-shelf components and deploy it locally for data privacy. Starmoon integrates various APIs for AI language models, speech-to-text, text-to-speech, and emotion intelligence. The hardware setup involves components like ESP32S3, microphone, amplifier, speaker, LED light, and button, along with software setup instructions for developers. The project also includes a web app, backend API, and background task dashboard for monitoring and management.
![evalchemy Screenshot](/screenshots_githubs/mlfoundations-evalchemy.jpg)
evalchemy
Evalchemy is a unified and easy-to-use toolkit for evaluating language models, focusing on post-trained models. It integrates multiple existing benchmarks such as RepoBench, AlpacaEval, and ZeroEval. Key features include unified installation, parallel evaluation, simplified usage, and results management. Users can run various benchmarks with a consistent command-line interface and track results locally or integrate with a database for systematic tracking and leaderboard submission.
![Cherry_LLM Screenshot](/screenshots_githubs/tianyi-lab-Cherry_LLM.jpg)
Cherry_LLM
Cherry Data Selection project introduces a self-guided methodology for LLMs to autonomously discern and select cherry samples from open-source datasets, minimizing manual curation and cost for instruction tuning. The project focuses on selecting impactful training samples ('cherry data') to enhance LLM instruction tuning by estimating instruction-following difficulty. The method involves phases like 'Learning from Brief Experience', 'Evaluating Based on Experience', and 'Retraining from Self-Guided Experience' to improve LLM performance.
![agentscope Screenshot](/screenshots_githubs/modelscope-agentscope.jpg)
agentscope
AgentScope is a multi-agent platform designed to empower developers to build multi-agent applications with large-scale models. It features three high-level capabilities: Easy-to-Use, High Robustness, and Actor-Based Distribution. AgentScope provides a list of `ModelWrapper` to support both local model services and third-party model APIs, including OpenAI API, DashScope API, Gemini API, and ollama. It also enables developers to rapidly deploy local model services using libraries such as ollama (CPU inference), Flask + Transformers, Flask + ModelScope, FastChat, and vllm. AgentScope supports various services, including Web Search, Data Query, Retrieval, Code Execution, File Operation, and Text Processing. Example applications include Conversation, Game, and Distribution. AgentScope is released under Apache License 2.0 and welcomes contributions.
![TempCompass Screenshot](/screenshots_githubs/llyx97-TempCompass.jpg)
TempCompass
TempCompass is a benchmark designed to evaluate the temporal perception ability of Video LLMs. It encompasses a diverse set of temporal aspects and task formats to comprehensively assess the capability of Video LLMs in understanding videos. The benchmark includes conflicting videos to prevent models from relying on single-frame bias and language priors. Users can clone the repository, install required packages, prepare data, run inference using examples like Video-LLaVA and Gemini, and evaluate the performance of their models across different tasks such as Multi-Choice QA, Yes/No QA, Caption Matching, and Caption Generation.
![SciCode Screenshot](/screenshots_githubs/scicode-bench-SciCode.jpg)
SciCode
SciCode is a challenging benchmark designed to evaluate the capabilities of language models (LMs) in generating code for solving realistic scientific research problems. It contains 338 subproblems decomposed from 80 challenging main problems across 16 subdomains from 6 domains. The benchmark offers optional descriptions specifying useful scientific background information and scientist-annotated gold-standard solutions and test cases for evaluation. SciCode demonstrates a realistic workflow of identifying critical science concepts and facts and transforming them into computation and simulation code, aiming to help showcase LLMs' progress towards assisting scientists and contribute to the future building and evaluation of scientific AI.
![auto-news Screenshot](/screenshots_githubs/finaldie-auto-news.jpg)
auto-news
Auto-News is an automatic news aggregator tool that utilizes Large Language Models (LLM) to pull information from various sources such as Tweets, RSS feeds, YouTube videos, web articles, Reddit, and journal notes. The tool aims to help users efficiently read and filter content based on personal interests, providing a unified reading experience and organizing information effectively. It features feed aggregation with summarization, transcript generation for videos and articles, noise reduction, task organization, and deep dive topic exploration. The tool supports multiple LLM backends, offers weekly top-k aggregations, and can be deployed on Linux/MacOS using docker-compose or Kubernetes.
![superduperdb Screenshot](/screenshots_githubs/SuperDuperDB-superduperdb.jpg)
superduperdb
SuperDuperDB is a Python framework for integrating AI models, APIs, and vector search engines directly with your existing databases, including hosting of your own models, streaming inference and scalable model training/fine-tuning. Build, deploy and manage any AI application without the need for complex pipelines, infrastructure as well as specialized vector databases, and moving our data there, by integrating AI at your data's source: - Generative AI, LLMs, RAG, vector search - Standard machine learning use-cases (classification, segmentation, regression, forecasting recommendation etc.) - Custom AI use-cases involving specialized models - Even the most complex applications/workflows in which different models work together SuperDuperDB is **not** a database. Think `db = superduper(db)`: SuperDuperDB transforms your databases into an intelligent platform that allows you to leverage the full AI and Python ecosystem. A single development and deployment environment for all your AI applications in one place, fully scalable and easy to manage.
![camel Screenshot](/screenshots_githubs/camel-ai-camel.jpg)
camel
CAMEL is an open-source library designed for the study of autonomous and communicative agents. We believe that studying these agents on a large scale offers valuable insights into their behaviors, capabilities, and potential risks. To facilitate research in this field, we implement and support various types of agents, tasks, prompts, models, and simulated environments.
![clearml-fractional-gpu Screenshot](/screenshots_githubs/allegroai-clearml-fractional-gpu.jpg)
clearml-fractional-gpu
ClearML Fractional GPU is a tool designed to optimize GPU resource utilization by allowing multiple containers to run on the same GPU with driver-level memory limitation and compute time-slicing. It supports CUDA 11.x & CUDA 12.x, preventing greedy processes from grabbing the entire GPU memory. The tool offers options like Dynamic GPU Slicing, Container-based Memory Limits, and Kubernetes-based Static MIG Slicing to enhance hardware utilization and workload performance for AI development.
![dora Screenshot](/screenshots_githubs/dora-rs-dora.jpg)
dora
Dataflow-oriented robotic application (dora-rs) is a framework that makes creation of robotic applications fast and simple. Building a robotic application can be summed up as bringing together hardwares, algorithms, and AI models, and make them communicate with each others. At dora-rs, we try to: make integration of hardware and software easy by supporting Python, C, C++, and also ROS2. make communication low latency by using zero-copy Arrow messages. dora-rs is still experimental and you might experience bugs, but we're working very hard to make it stable as possible.
![inferable Screenshot](/screenshots_githubs/inferablehq-inferable.jpg)
inferable
Inferable is an open source platform that helps users build reliable LLM-powered agentic automations at scale. It offers a managed agent runtime, durable tool calling, zero network configuration, multiple language support, and is fully open source under the MIT license. Users can define functions, register them with Inferable, and create runs that utilize these functions to automate tasks. The platform supports Node.js/TypeScript, Go, .NET, and React, and provides SDKs, core services, and bootstrap templates for various languages.
![Consistency_LLM Screenshot](/screenshots_githubs/hao-ai-lab-Consistency_LLM.jpg)
Consistency_LLM
Consistency Large Language Models (CLLMs) is a family of efficient parallel decoders that reduce inference latency by efficiently decoding multiple tokens in parallel. The models are trained to perform efficient Jacobi decoding, mapping any randomly initialized token sequence to the same result as auto-regressive decoding in as few steps as possible. CLLMs have shown significant improvements in generation speed on various tasks, achieving up to 3.4 times faster generation. The tool provides a seamless integration with other techniques for efficient Large Language Model (LLM) inference, without the need for draft models or architectural modifications.
![LLM4Decompile Screenshot](/screenshots_githubs/albertan017-LLM4Decompile.jpg)
LLM4Decompile
LLM4Decompile is an open-source large language model dedicated to decompilation of Linux x86_64 binaries, supporting GCC's O0 to O3 optimization levels. It focuses on assessing re-executability of decompiled code through HumanEval-Decompile benchmark. The tool includes models with sizes ranging from 1.3 billion to 33 billion parameters, available on Hugging Face. Users can preprocess C code into binary and assembly instructions, then decompile assembly instructions into C using LLM4Decompile. Ongoing efforts aim to expand capabilities to support more architectures and configurations, integrate with decompilation tools like Ghidra and Rizin, and enhance performance with larger training datasets.
![openrl Screenshot](/screenshots_githubs/OpenRL-Lab-openrl.jpg)
openrl
OpenRL is an open-source general reinforcement learning research framework that supports training for various tasks such as single-agent, multi-agent, offline RL, self-play, and natural language. Developed based on PyTorch, the goal of OpenRL is to provide a simple-to-use, flexible, efficient and sustainable platform for the reinforcement learning research community. It supports a universal interface for all tasks/environments, single-agent and multi-agent tasks, offline RL training with expert dataset, self-play training, reinforcement learning training for natural language tasks, DeepSpeed, Arena for evaluation, importing models and datasets from Hugging Face, user-defined environments, models, and datasets, gymnasium environments, callbacks, visualization tools, unit testing, and code coverage testing. It also supports various algorithms like PPO, DQN, SAC, and environments like Gymnasium, MuJoCo, Atari, and more.
For similar tasks
![Detection-and-Classification-of-Alzheimers-Disease Screenshot](/screenshots_githubs/sonal-bansal-Detection-and-Classification-of-Alzheimers-Disease.jpg)
Detection-and-Classification-of-Alzheimers-Disease
This tool is designed to detect and classify Alzheimer's Disease using Deep Learning and Machine Learning algorithms on an early basis, which is further optimized using the Crow Search Algorithm (CSA). Alzheimer's is a fatal disease, and early detection is crucial for patients to predetermine their condition and prevent its progression. By analyzing MRI scanned images using Artificial Intelligence technology, this tool can classify patients who may or may not develop AD in the future. The CSA algorithm, combined with ML algorithms, has proven to be the most effective approach for this purpose.
![MedLLMsPracticalGuide Screenshot](/screenshots_githubs/AI-in-Health-MedLLMsPracticalGuide.jpg)
MedLLMsPracticalGuide
This repository serves as a practical guide for Medical Large Language Models (Medical LLMs) and provides resources, surveys, and tools for building, fine-tuning, and utilizing LLMs in the medical domain. It covers a wide range of topics including pre-training, fine-tuning, downstream biomedical tasks, clinical applications, challenges, future directions, and more. The repository aims to provide insights into the opportunities and challenges of LLMs in medicine and serve as a practical resource for constructing effective medical LLMs.
![AMIE-pytorch Screenshot](/screenshots_githubs/lucidrains-AMIE-pytorch.jpg)
AMIE-pytorch
Implementation of the general framework for AMIE, from the paper Towards Conversational Diagnostic AI, out of Google Deepmind. This repository provides a Pytorch implementation of the AMIE framework, aimed at enabling conversational diagnostic AI. It is a work in progress and welcomes collaboration from individuals with a background in deep learning and an interest in medical applications.
![HuatuoGPT-o1 Screenshot](/screenshots_githubs/FreedomIntelligence-HuatuoGPT-o1.jpg)
HuatuoGPT-o1
HuatuoGPT-o1 is a medical language model designed for advanced medical reasoning. It can identify mistakes, explore alternative strategies, and refine answers. The model leverages verifiable medical problems and a specialized medical verifier to guide complex reasoning trajectories and enhance reasoning through reinforcement learning. The repository provides access to models, data, and code for HuatuoGPT-o1, allowing users to deploy the model for medical reasoning tasks.
![MING Screenshot](/screenshots_githubs/MediaBrain-SJTU-MING.jpg)
MING
MING is an open-sourced Chinese medical consultation model fine-tuned based on medical instructions. The main functions of the model are as follows: Medical Q&A: answering medical questions and analyzing cases. Intelligent consultation: giving diagnosis results and suggestions after multiple rounds of consultation.
![IvyGPT Screenshot](/screenshots_githubs/WangRongsheng-IvyGPT.jpg)
IvyGPT
IvyGPT is a medical large language model that aims to generate the most realistic doctor consultation effects. It has been fine-tuned on high-quality medical Q&A data and trained using human feedback reinforcement learning. The project features full-process training on medical Q&A LLM, multiple fine-tuning methods support, efficient dataset creation tools, and a dataset of over 300,000 high-quality doctor-patient dialogues for training.
For similar jobs
![HuatuoGPT-o1 Screenshot](/screenshots_githubs/FreedomIntelligence-HuatuoGPT-o1.jpg)
HuatuoGPT-o1
HuatuoGPT-o1 is a medical language model designed for advanced medical reasoning. It can identify mistakes, explore alternative strategies, and refine answers. The model leverages verifiable medical problems and a specialized medical verifier to guide complex reasoning trajectories and enhance reasoning through reinforcement learning. The repository provides access to models, data, and code for HuatuoGPT-o1, allowing users to deploy the model for medical reasoning tasks.
![LLM-for-Healthcare Screenshot](/screenshots_githubs/KaiHe-better-LLM-for-Healthcare.jpg)
LLM-for-Healthcare
The repository 'LLM-for-Healthcare' provides a comprehensive survey of large language models (LLMs) for healthcare, covering data, technology, applications, and accountability and ethics. It includes information on various LLM models, training data, evaluation methods, and computation costs. The repository also discusses tasks such as NER, text classification, question answering, dialogue systems, and generation of medical reports from images in the healthcare domain.
![HuatuoGPT-II Screenshot](/screenshots_githubs/FreedomIntelligence-HuatuoGPT-II.jpg)
HuatuoGPT-II
HuatuoGPT2 is an innovative domain-adapted medical large language model that excels in medical knowledge and dialogue proficiency. It showcases state-of-the-art performance in various medical benchmarks, surpassing GPT-4 in expert evaluations and fresh medical licensing exams. The open-source release includes HuatuoGPT2 models in 7B, 13B, and 34B versions, training code for one-stage adaptation, partial pre-training and fine-tuning instructions, and evaluation methods for medical response capabilities and professional pharmacist exams. The tool aims to enhance LLM capabilities in the Chinese medical field through open-source principles.
![fuse-med-ml Screenshot](/screenshots_githubs/BiomedSciAI-fuse-med-ml.jpg)
fuse-med-ml
FuseMedML is a Python framework designed to accelerate machine learning-based discovery in the medical field by promoting code reuse. It provides a flexible design concept where data is stored in a nested dictionary, allowing easy handling of multi-modality information. The framework includes components for creating custom models, loss functions, metrics, and data processing operators. Additionally, FuseMedML offers 'batteries included' key components such as fuse.data for data processing, fuse.eval for model evaluation, and fuse.dl for reusable deep learning components. It supports PyTorch and PyTorch Lightning libraries and encourages the creation of domain extensions for specific medical domains.
![MedLLMsPracticalGuide Screenshot](/screenshots_githubs/AI-in-Health-MedLLMsPracticalGuide.jpg)
MedLLMsPracticalGuide
This repository serves as a practical guide for Medical Large Language Models (Medical LLMs) and provides resources, surveys, and tools for building, fine-tuning, and utilizing LLMs in the medical domain. It covers a wide range of topics including pre-training, fine-tuning, downstream biomedical tasks, clinical applications, challenges, future directions, and more. The repository aims to provide insights into the opportunities and challenges of LLMs in medicine and serve as a practical resource for constructing effective medical LLMs.
![hi-ml Screenshot](/screenshots_githubs/microsoft-hi-ml.jpg)
hi-ml
The Microsoft Health Intelligence Machine Learning Toolbox is a repository that provides low-level and high-level building blocks for Machine Learning / AI researchers and practitioners. It simplifies and streamlines work on deep learning models for healthcare and life sciences by offering tested components such as data loaders, pre-processing tools, deep learning models, and cloud integration utilities. The repository includes two Python packages, 'hi-ml-azure' for helper functions in AzureML, 'hi-ml' for ML components, and 'hi-ml-cpath' for models and workflows related to histopathology images.
![SlicerTotalSegmentator Screenshot](/screenshots_githubs/lassoan-SlicerTotalSegmentator.jpg)
SlicerTotalSegmentator
TotalSegmentator is a 3D Slicer extension designed for fully automatic whole body CT segmentation using the 'TotalSegmentator' AI model. The computation time is less than one minute, making it efficient for research purposes. Users can set up GPU acceleration for faster segmentation. The tool provides a user-friendly interface for loading CT images, creating segmentations, and displaying results in 3D. Troubleshooting steps are available for common issues such as failed computation, GPU errors, and inaccurate segmentations. Contributions to the extension are welcome, following 3D Slicer contribution guidelines.
![machine-learning-research Screenshot](/screenshots_githubs/imteekay-machine-learning-research.jpg)
machine-learning-research
The 'machine-learning-research' repository is a comprehensive collection of resources related to mathematics, machine learning, deep learning, artificial intelligence, data science, and various scientific fields. It includes materials such as courses, tutorials, books, podcasts, communities, online courses, papers, and dissertations. The repository covers topics ranging from fundamental math skills to advanced machine learning concepts, with a focus on applications in healthcare, genetics, computational biology, precision health, and AI in science. It serves as a valuable resource for individuals interested in learning and researching in the fields of machine learning and related disciplines.