onnxruntime-server

onnxruntime-server

ONNX Runtime Server: The ONNX Runtime Server is a server that provides TCP and HTTP/HTTPS REST APIs for ONNX inference.

Stars: 134

Visit
 screenshot

ONNX Runtime Server is a server that provides TCP and HTTP/HTTPS REST APIs for ONNX inference. It aims to offer simple, high-performance ML inference and a good developer experience. Users can provide inference APIs for ONNX models without writing additional code by placing the models in the directory structure. Each session can choose between CPU or CUDA, analyze input/output, and provide Swagger API documentation for easy testing. Ready-to-run Docker images are available, making it convenient to deploy the server.

README:

ONNX Runtime Server

ONNX Runtime CMake on Linux CMake on MacOS CMake on Windows License

  • ONNX: Open Neural Network Exchange
  • The ONNX Runtime Server is a server that provides TCP and HTTP/HTTPS REST APIs for ONNX inference.
  • ONNX Runtime Server aims to provide simple, high-performance ML inference and a good developer experience.
    • If you have exported ML models trained in various environments as ONNX files, you can provide inference APIs without writing additional code or metadata. Just place the ONNX files into the directory structure.
    • Each ONNX session, you can choose to use CPU or CUDA.
    • Analyze the input/output of ONNX models to provide type/shape information for your collaborators.
    • Built-in Swagger API documentation makes it easy for collaborators to test ML models through the API. (API example)
    • Ready-to-run Docker images. No build required.


Build ONNX Runtime Server

Requirements


Install ONNX Runtime

Linux

  • Use download-onnxruntime-linux.sh script
    • This script downloads the latest version of the binary and install to /usr/local/onnxruntime.
    • Also, add /usr/local/onnxruntime/lib to /etc/ld.so.conf.d/onnxruntime.conf and run ldconfig.
  • Or manually download binary from ONNX Runtime Releases.

Mac OS

brew install onnxruntime

Install dependencies

Ubuntu/Debian

sudo apt install cmake pkg-config libboost-all-dev libssl-dev
(optional) CUDA support (CUDA 12.x, cuDNN 9.x)
sudo apt install cuda-toolkit-12 libcudnn9-dev-cuda-12
# optional, for Nvidia GPU support with Docker 
sudo apt install nvidia-container-toolkit 

Mac OS

brew install cmake boost openssl

Compile and Install

cmake -B build -S . -DCMAKE_BUILD_TYPE=Release
cmake --build build --parallel
sudo cmake --install build --prefix /usr/local/onnxruntime-server

Install via a package manager

OS Method Command
Arch Linux AUR yay -S onnxruntime-server

Run the server

  • You must enter the path option(--model-dir) where the models are located.
    • The onnx model files must be located in the following path: ${model_dir}/${model_name}/${model_version}/model.onnx or ${model_dir}/${model_name}/${model_version}.onnx
Files in --model-dir Create session request body Get/Execute session API URL path
(after created)
model_name/model_version/model.onnx or model_name/model_version.onnx {"model":"model_name", "version":"model_version"} /api/sessions/model_name/model_version
sample/v1/model.onnx or sample/v1.onnx {"model":"sample", "version":"v1"} /api/sessions/sample/v1
sample/v2/model.onnx or sample/v2.onnx {"model":"sample", "version":"v2"} /api/sessions/sample/v2
other/20200101/model.onnx or other/20200101.onnx {"model":"other", "version":"20200101"} /api/sessions/other/20200101
  • You need to enable one of the following backends: TCP, HTTP, or HTTPS.
    • If you want to use TCP, you must specify the --tcp-port option.
    • If you want to use HTTP, you must specify the --http-port option.
    • If you want to use HTTPS, you must specify the --https-port, --https-cert and --https-key options.
    • If you want to use Swagger, you must specify the --swagger-url-path option.
  • Use the -h, --help option to see a full list of options.
  • All options can be set as environment variables. This can be useful when operating in a container like Docker.
    • Normally, command-line options are prioritized over environment variables, but if the ONNX_SERVER_CONFIG_PRIORITY=env environment variable exists, environment variables have higher priority. Within a Docker image, environment variables have higher priority.

Options

Option Environment Description
--workers ONNX_SERVER_WORKERS Worker thread pool size.
Default: 4
--request-payload-limit ONNX_SERVER_REQUEST_PAYLOAD_LIMIT HTTP/HTTPS request payload size limit.
Default: 1024 * 1024 * 10(10MB)`
--model-dir ONNX_SERVER_MODEL_DIR Model directory path
The onnx model files must be located in the following path:
${model_dir}/${model_name}/${model_version}/model.onnx or
${model_dir}/${model_name}/${model_version}.onnx
Default: models
--prepare-model ONNX_SERVER_PREPARE_MODEL Pre-create some model sessions at server startup.

Format as a space-separated list of model_name:model_version or model_name:model_version(session_options, ...).

Available session_options are
- cuda=device_id[ or true or false]

eg) model1:v1 model2:v9
model1:v1(cuda=true) model2:v9(cuda=1)

Backend options

Option Environment Description
--tcp-port ONNX_SERVER_TCP_PORT Enable TCP backend and which port number to use.
--http-port ONNX_SERVER_HTTP_PORT Enable HTTP backend and which port number to use.
--https-port ONNX_SERVER_HTTPS_PORT Enable HTTPS backend and which port number to use.
--https-cert ONNX_SERVER_HTTPS_CERT SSL Certification file path for HTTPS
--https-key ONNX_SERVER_HTTPS_KEY SSL Private key file path for HTTPS
--swagger-url-path ONNX_SERVER_SWAGGER_URL_PATH Enable Swagger API document for HTTP/HTTPS backend.
This value cannot start with "/api/" and "/health"
If not specified, swagger document not provided.
eg) /swagger or /api-docs

Log options

Option Environment Description
--log-level ONNX_SERVER_LOG_LEVEL Log level(debug, info, warn, error, fatal)
--log-file ONNX_SERVER_LOG_FILE Log file path.
If not specified, logs will be printed to stdout.
--access-log-file ONNX_SERVER_ACCESS_LOG_FILE Access log file path.
If not specified, logs will be printed to stdout.

Docker

DOCKER_IMAGE=kibae/onnxruntime-server:1.20.1-linux-cuda12 # or kibae/onnxruntime-server:1.20.1-linux-cpu	

docker pull ${DOCKER_IMAGE}

# simple http backend
docker run --name onnxruntime_server_container -d --rm --gpus all \
  -p 80:80 \
  -v "/your_model_dir:/app/models" \
  -v "/your_log_dir:/app/logs" \
  -e "ONNX_SERVER_SWAGGER_URL_PATH=/api-docs" \
  ${DOCKER_IMAGE}

API

  • HTTP/HTTPS REST API
    • API documentation (Swagger) is built in. If you want the server to serve swagger, add the --swagger-url-path=/swagger/ option at launch. This must be used with the --http-port or --https-port option.
      ./onnxruntime_server --model-dir=YOUR_MODEL_DIR --http-port=8080 --swagger-url-path=/api-docs/
      • After running the server as above, you will be able to access the Swagger UI available at http://localhost:8080/api-docs/.
    • Swagger Sample
  • TCP API

How to use

  • A few things have been left out to help you get a rough idea of the usage flow.

Simple usage examples

Example of creating ONNX sessions at server startup

%%{init: {
    'sequence': {'noteAlign': 'left', 'mirrorActors': true}
}}%%
sequenceDiagram
    actor A as Administrator
    box rgb(0, 0, 0, 0.1) "ONNX Runtime Server"
        participant SD as Disk
        participant SP as Process
    end
    actor C as Client
    Note right of A: You have 3 models to serve.
    A ->> SD: copy model files to disk.<br />"/var/models/model_A/v1/model.onnx"<br />"/var/models/model_A/v2/model.onnx"<br />"/var/models/model_B/20201101/model.onnx"
    A ->> SP: Start server with --prepare-model option
    activate SP
    Note right of A: onnxruntime_server<br />--http-port=8080<br />--model-path=/var/models<br />--prepare-model="model_A:v1(cuda=0) model_A:v2(cuda=0)"
    SP -->> SD: Load model
    Note over SD, SP: Load model from<br />"/var/models/model_A/v1/model.onnx"
    SD -->> SP: Model binary
    activate SP
    SP -->> SP: Create<br />onnxruntime<br />session
    deactivate SP
    deactivate SP
    rect rgb(100, 100, 100, 0.3)
        Note over SD, C: Execute Session
        C ->> SP: Execute session request
        activate SP
        Note over SP, C: POST /api/sessions/model_A/v1<br />{<br />"x": [[1], [2], [3]],<br />"y": [[2], [3], [4]],<br />"z": [[3], [4], [5]]<br />}
        activate SP
        SP -->> SP: Execute<br />onnxruntime<br />session
        deactivate SP
        SP ->> C: Execute session response
        deactivate SP
        Note over SP, C: {<br />"output": [<br />[0.6492120623588562],<br />[0.7610487341880798],<br />[0.8728854656219482]<br />]<br />}
    end

Example of the client creating and running ONNX sessions

%%{init: {
    'sequence': {'noteAlign': 'left', 'mirrorActors': true}
}}%%
sequenceDiagram
    actor A as Administrator
    box rgb(0, 0, 0, 0.1) "ONNX Runtime Server"
        participant SD as Disk
        participant SP as Process
    end
    actor C as Client
    Note right of A: You have 3 models to serve.
    A ->> SD: copy model files to disk.<br />"/var/models/model_A/v1/model.onnx"<br />"/var/models/model_A/v2/model.onnx"<br />"/var/models/model_B/20201101/model.onnx"
    A ->> SP: Start server
    Note right of A: onnxruntime_server<br />--http-port=8080<br />--model-path=/var/models
    rect rgb(100, 100, 100, 0.3)
        Note over SD, C: Create Session
        C ->> SP: Create session request
        activate SP
        Note over SP, C: POST /api/sessions<br />{"model": "model_A", "version": "v1"}
        SP -->> SD: Load model
        Note over SD, SP: Load model from<br />"/var/models/model_A/v1/model.onnx"
        SD -->> SP: Model binary
        activate SP
        SP -->> SP: Create<br />onnxruntime<br />session
        deactivate SP
        SP ->> C: Create session response
        deactivate SP
        Note over SP, C: {<br />"model": "model_A",<br />"version": "v1",<br />"created_at": 1694228106,<br />"execution_count": 0,<br />"last_executed_at": 0,<br />"inputs": {<br />"x": "float32[-1,1]",<br />"y": "float32[-1,1]",<br />"z": "float32[-1,1]"<br />},<br />"outputs": {<br />"output": "float32[-1,1]"<br />}<br />}
        Note right of C: 👌 You can know the type and shape<br />of the input and output.
    end
    rect rgb(100, 100, 100, 0.3)
        Note over SD, C: Execute Session
        C ->> SP: Execute session request
        activate SP
        Note over SP, C: POST /api/sessions/model_A/v1<br />{<br />"x": [[1], [2], [3]],<br />"y": [[2], [3], [4]],<br />"z": [[3], [4], [5]]<br />}
        activate SP
        SP -->> SP: Execute<br />onnxruntime<br />session
        deactivate SP
        SP ->> C: Execute session response
        deactivate SP
        Note over SP, C: {<br />"output": [<br />[0.6492120623588562],<br />[0.7610487341880798],<br />[0.8728854656219482]<br />]<br />}
    end

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for onnxruntime-server

Similar Open Source Tools

For similar tasks

For similar jobs