![yolo-flutter-app](/statics/github-mark.png)
yolo-flutter-app
A Flutter plugin for Ultralytics YOLO computer vision models
Stars: 124
![screenshot](/screenshots_githubs/ultralytics-yolo-flutter-app.jpg)
Ultralytics YOLO for Flutter is a Flutter plugin that allows you to integrate Ultralytics YOLO computer vision models into your mobile apps. It supports both Android and iOS platforms, providing APIs for object detection and image classification. The plugin leverages Flutter Platform Channels for seamless communication between the client and host, handling all processing natively. Before using the plugin, you need to export the required models in `.tflite` and `.mlmodel` formats. The plugin provides support for tasks like detection and classification, with specific instructions for Android and iOS platforms. It also includes features like camera preview and methods for object detection and image classification on images. Ultralytics YOLO thrives on community collaboration and offers different licensing paths for open-source and commercial use cases.
README:
A Flutter plugin for integrating Ultralytics YOLO computer vision models into your mobile apps. The plugin supports both Android and iOS platforms, and provides APIs for object detection and image classification.
Feature | Android | iOS |
---|---|---|
Detection | ✅ | ✅ |
Classification | ✅ | ✅ |
Pose Estimation | ❌ | ❌ |
Segmentation | ❌ | ❌ |
OBB Detection | ❌ | ❌ |
Before proceeding further or reporting new issues, please ensure you read this documentation thoroughly.
Ultralytics YOLO is designed specifically for mobile platforms, targeting iOS and Android apps. The plugin leverages Flutter Platform Channels for communication between the client (app/plugin) and host (platform), ensuring seamless integration and responsiveness. All processing related to Ultralytics YOLO APIs is handled natively using Flutter's native APIs, with the plugin serving as a bridge between your app and Ultralytics YOLO.
Before you can use Ultralytics YOLO in your app, you must export the required models. The exported models are in the form of .tflite
and .mlmodel
files, which you can then include in your app. Use the Ultralytics YOLO CLI to export the models.
IMPORTANT: The parameters in the commands above are mandatory. Ultralytics YOLO plugin for Flutter only supports the models exported using the commands above. If you use different parameters, the plugin will not work as expected. We're working on adding support for more models and parameters in the future.
The following commands are used to export the models:
Android
yolo export format=tflite model=yolov8n imgsz=320 int8
yolo export format=tflite model=yolov8n-cls imgsz=320 int8
Then use file yolov8n_int8.tflite
or yolov8n-cls_int8.tflite
iOS
To export the YOLOv8n Detection model for iOS, use the following command:yolo export format=mlmodel model=yolov8n imgsz=[320, 192] half nms
After exporting the models, you will get the .tflite
and .mlmodel
files. Include these files in your app's assets
folder.
Ensure that you have the necessary permissions to access the camera and storage.
Android
Add the following permissions to your AndroidManifest.xml
file:
<uses-permission android:name="android.permission.CAMERA"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
iOS
Add the following permissions to your `Info.plist` file:<key>NSCameraUsageDescription</key>
<string>Camera permission is required for object detection.</string>
<key>NSPhotoLibraryUsageDescription</key>
<string>Storage permission is required for object detection.</string>
Add the following permissions to your Podfile
:
post_install do |installer|
installer.pods_project.targets.each do |target|
flutter_additional_ios_build_settings(target)
# Start of the permission_handler configuration
target.build_configurations.each do |config|
config.build_settings['GCC_PREPROCESSOR_DEFINITIONS'] ||= [
'$(inherited)',
## dart: PermissionGroup.camera
'PERMISSION_CAMERA=1',
## dart: PermissionGroup.photos
'PERMISSION_PHOTOS=1',
]
end
# End of the permission_handler configuration
end
end
Create a predictor object using the LocalYoloModel
class. This class requires the following parameters:
final model = LocalYoloModel(
id: id,
task: Task.detect /* or Task.classify */,
format: Format.tflite /* or Format.coreml*/,
modelPath: modelPath,
metadataPath: metadataPath,
);
final objectDetector = ObjectDetector(model: model);
await objectDetector.loadModel();
final imageClassifier = ImageClassifier(model: model);
await imageClassifier.loadModel();
The UltralyticsYoloCameraPreview
widget is used to display the camera preview and the results of the prediction.
final _controller = UltralyticsYoloCameraController();
UltralyticsYoloCameraPreview(
predictor: predictor, // Your prediction model data
controller: _controller, // Ultralytics camera controller
// For showing any widget on screen at the time of model loading
loadingPlaceholder: Center(
child: Wrap(
direction: Axis.vertical,
crossAxisAlignment: WrapCrossAlignment.center,
children: [
const CircularProgressIndicator(
color: Colors.white,
strokeWidth: 2,
),
const SizedBox(height: 20),
Text(
'Loading model...',
style: theme.typography.base.copyWith(
color: Colors.white,
fontSize: 14,
),
Use the detect
or classify
methods to get the results of the prediction on an image.
objectDetector.detect(imagePath: imagePath)
or
imageClassifier.classify(imagePath: imagePath)
Ultralytics thrives on community collaboration; we immensely value your involvement! We urge you to peruse our Contributing Guide for detailed insights on how you can participate. Don't forget to share your feedback with us by contributing to our Survey. A heartfelt thank you 🙏 goes out to everyone who has already contributed!
![Ultralytics open-source contributors](https://github.com/ultralytics/assets/raw/main/im/image-contributors.png)
Ultralytics presents two distinct licensing paths to accommodate a variety of scenarios:
- AGPL-3.0 License: This official OSI-approved open-source license is perfectly aligned with the goals of students, enthusiasts, and researchers who believe in the virtues of open collaboration and shared wisdom. Details are available in the LICENSE document.
- Enterprise License: Tailored for commercial deployment, this license authorizes the unfettered integration of Ultralytics software and AI models within commercial goods and services, without the copyleft stipulations of AGPL-3.0. Should your use case demand an enterprise solution, direct your inquiries to Ultralytics Licensing.
For bugs or feature suggestions pertaining to Ultralytics, please lodge an issue via GitHub Issues. You're also invited to participate in our Discord community to engage in discussions and seek advice!
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for yolo-flutter-app
Similar Open Source Tools
![yolo-flutter-app Screenshot](/screenshots_githubs/ultralytics-yolo-flutter-app.jpg)
yolo-flutter-app
Ultralytics YOLO for Flutter is a Flutter plugin that allows you to integrate Ultralytics YOLO computer vision models into your mobile apps. It supports both Android and iOS platforms, providing APIs for object detection and image classification. The plugin leverages Flutter Platform Channels for seamless communication between the client and host, handling all processing natively. Before using the plugin, you need to export the required models in `.tflite` and `.mlmodel` formats. The plugin provides support for tasks like detection and classification, with specific instructions for Android and iOS platforms. It also includes features like camera preview and methods for object detection and image classification on images. Ultralytics YOLO thrives on community collaboration and offers different licensing paths for open-source and commercial use cases.
![quickvid Screenshot](/screenshots_githubs/metaloozee-quickvid.jpg)
quickvid
QuickVid is an open-source video summarization tool that uses AI to generate summaries of YouTube videos. It is built with Whisper, GPT, LangChain, and Supabase. QuickVid can be used to save time and get the essence of any YouTube video with intelligent summarization.
![openlit Screenshot](/screenshots_githubs/openlit-openlit.jpg)
openlit
OpenLIT is an OpenTelemetry-native GenAI and LLM Application Observability tool. It's designed to make the integration process of observability into GenAI projects as easy as pie – literally, with just **a single line of code**. Whether you're working with popular LLM Libraries such as OpenAI and HuggingFace or leveraging vector databases like ChromaDB, OpenLIT ensures your applications are monitored seamlessly, providing critical insights to improve performance and reliability.
![fiftyone Screenshot](/screenshots_githubs/voxel51-fiftyone.jpg)
fiftyone
FiftyOne is an open-source tool designed for building high-quality datasets and computer vision models. It supercharges machine learning workflows by enabling users to visualize datasets, interpret models faster, and improve efficiency. With FiftyOne, users can explore scenarios, identify failure modes, visualize complex labels, evaluate models, find annotation mistakes, and much more. The tool aims to streamline the process of improving machine learning models by providing a comprehensive set of features for data analysis and model interpretation.
![AutoRAG Screenshot](/screenshots_githubs/Marker-Inc-Korea-AutoRAG.jpg)
AutoRAG
AutoRAG is an AutoML tool designed to automatically find the optimal RAG pipeline for your data. It simplifies the process of evaluating various RAG modules to identify the best pipeline for your specific use-case. The tool supports easy evaluation of different module combinations, making it efficient to find the most suitable RAG pipeline for your needs. AutoRAG also offers a cloud beta version to assist users in running and optimizing the tool, along with building RAG evaluation datasets for a starting price of $9.99 per optimization.
![evalscope Screenshot](/screenshots_githubs/modelscope-evalscope.jpg)
evalscope
Eval-Scope is a framework designed to support the evaluation of large language models (LLMs) by providing pre-configured benchmark datasets, common evaluation metrics, model integration, automatic evaluation for objective questions, complex task evaluation using expert models, reports generation, visualization tools, and model inference performance evaluation. It is lightweight, easy to customize, supports new dataset integration, model hosting on ModelScope, deployment of locally hosted models, and rich evaluation metrics. Eval-Scope also supports various evaluation modes like single mode, pairwise-baseline mode, and pairwise (all) mode, making it suitable for assessing and improving LLMs.
![deep-chat Screenshot](/screenshots_githubs/OvidijusParsiunas-deep-chat.jpg)
deep-chat
Deep Chat is a fully customizable AI chat component that can be injected into your website with minimal to no effort. Whether you want to create a chatbot that leverages popular APIs such as ChatGPT or connect to your own custom service, this component can do it all! Explore deepchat.dev to view all of the available features, how to use them, examples and more!
![obsei Screenshot](/screenshots_githubs/obsei-obsei.jpg)
obsei
Obsei is an open-source, low-code, AI powered automation tool that consists of an Observer to collect unstructured data from various sources, an Analyzer to analyze the collected data with various AI tasks, and an Informer to send analyzed data to various destinations. The tool is suitable for scheduled jobs or serverless applications as all Observers can store their state in databases. Obsei is still in alpha stage, so caution is advised when using it in production. The tool can be used for social listening, alerting/notification, automatic customer issue creation, extraction of deeper insights from feedbacks, market research, dataset creation for various AI tasks, and more based on creativity.
![Consistency_LLM Screenshot](/screenshots_githubs/hao-ai-lab-Consistency_LLM.jpg)
Consistency_LLM
Consistency Large Language Models (CLLMs) is a family of efficient parallel decoders that reduce inference latency by efficiently decoding multiple tokens in parallel. The models are trained to perform efficient Jacobi decoding, mapping any randomly initialized token sequence to the same result as auto-regressive decoding in as few steps as possible. CLLMs have shown significant improvements in generation speed on various tasks, achieving up to 3.4 times faster generation. The tool provides a seamless integration with other techniques for efficient Large Language Model (LLM) inference, without the need for draft models or architectural modifications.
![spandrel Screenshot](/screenshots_githubs/chaiNNer-org-spandrel.jpg)
spandrel
Spandrel is a library for loading and running pre-trained PyTorch models. It automatically detects the model architecture and hyperparameters from model files, and provides a unified interface for running models.
![fastserve-ai Screenshot](/screenshots_githubs/gradsflow-fastserve-ai.jpg)
fastserve-ai
FastServe-AI is a machine learning serving tool focused on GenAI & LLMs with simplicity as the top priority. It allows users to easily serve custom models by implementing the 'handle' method for 'FastServe'. The tool provides a FastAPI server for custom models and can be deployed using Lightning AI Studio. Users can install FastServe-AI via pip and run it to serve their own GPT-like LLM models in minutes.
![HuixiangDou Screenshot](/screenshots_githubs/InternLM-HuixiangDou.jpg)
HuixiangDou
HuixiangDou is a **group chat** assistant based on LLM (Large Language Model). Advantages: 1. Design a two-stage pipeline of rejection and response to cope with group chat scenario, answer user questions without message flooding, see arxiv2401.08772 2. Low cost, requiring only 1.5GB memory and no need for training 3. Offers a complete suite of Web, Android, and pipeline source code, which is industrial-grade and commercially viable Check out the scenes in which HuixiangDou are running and join WeChat Group to try AI assistant inside. If this helps you, please give it a star ⭐
![beta9 Screenshot](/screenshots_githubs/beam-cloud-beta9.jpg)
beta9
Beta9 is an open-source platform for running scalable serverless GPU workloads across cloud providers. It allows users to scale out workloads to thousands of GPU or CPU containers, achieve ultrafast cold-start for custom ML models, automatically scale to zero to pay for only what is used, utilize flexible distributed storage, distribute workloads across multiple cloud providers, and easily deploy task queues and functions using simple Python abstractions. The platform is designed for launching remote serverless containers quickly, featuring a custom, lazy loading image format backed by S3/FUSE, a fast redis-based container scheduling engine, content-addressed storage for caching images and files, and a custom runc container runtime.
![auto-news Screenshot](/screenshots_githubs/finaldie-auto-news.jpg)
auto-news
Auto-News is an automatic news aggregator tool that utilizes Large Language Models (LLM) to pull information from various sources such as Tweets, RSS feeds, YouTube videos, web articles, Reddit, and journal notes. The tool aims to help users efficiently read and filter content based on personal interests, providing a unified reading experience and organizing information effectively. It features feed aggregation with summarization, transcript generation for videos and articles, noise reduction, task organization, and deep dive topic exploration. The tool supports multiple LLM backends, offers weekly top-k aggregations, and can be deployed on Linux/MacOS using docker-compose or Kubernetes.
![llm-interface Screenshot](/screenshots_githubs/samestrin-llm-interface.jpg)
llm-interface
LLM Interface is an npm module that streamlines interactions with various Large Language Model (LLM) providers in Node.js applications. It offers a unified interface for switching between providers and models, supporting 36 providers and hundreds of models. Features include chat completion, streaming, error handling, extensibility, response caching, retries, JSON output, and repair. The package relies on npm packages like axios, @google/generative-ai, dotenv, jsonrepair, and loglevel. Installation is done via npm, and usage involves sending prompts to LLM providers. Tests can be run using npm test. Contributions are welcome under the MIT License.
![Notate Screenshot](/screenshots_githubs/CNTRLAI-Notate.jpg)
Notate
Notate is a powerful desktop research assistant that combines AI-driven analysis with advanced vector search technology. It streamlines research workflow by processing, organizing, and retrieving information from documents, audio, and text. Notate offers flexible AI capabilities with support for various LLM providers and local models, ensuring data privacy. Built for researchers, academics, and knowledge workers, it features real-time collaboration, accessible UI, and cross-platform compatibility.
For similar tasks
![AiTreasureBox Screenshot](/screenshots_githubs/superiorlu-AiTreasureBox.jpg)
AiTreasureBox
AiTreasureBox is a versatile AI tool that provides a collection of pre-trained models and algorithms for various machine learning tasks. It simplifies the process of implementing AI solutions by offering ready-to-use components that can be easily integrated into projects. With AiTreasureBox, users can quickly prototype and deploy AI applications without the need for extensive knowledge in machine learning or deep learning. The tool covers a wide range of tasks such as image classification, text generation, sentiment analysis, object detection, and more. It is designed to be user-friendly and accessible to both beginners and experienced developers, making AI development more efficient and accessible to a wider audience.
![InternVL Screenshot](/screenshots_githubs/OpenGVLab-InternVL.jpg)
InternVL
InternVL scales up the ViT to _**6B parameters**_ and aligns it with LLM. It is a vision-language foundation model that can perform various tasks, including: **Visual Perception** - Linear-Probe Image Classification - Semantic Segmentation - Zero-Shot Image Classification - Multilingual Zero-Shot Image Classification - Zero-Shot Video Classification **Cross-Modal Retrieval** - English Zero-Shot Image-Text Retrieval - Chinese Zero-Shot Image-Text Retrieval - Multilingual Zero-Shot Image-Text Retrieval on XTD **Multimodal Dialogue** - Zero-Shot Image Captioning - Multimodal Benchmarks with Frozen LLM - Multimodal Benchmarks with Trainable LLM - Tiny LVLM InternVL has been shown to achieve state-of-the-art results on a variety of benchmarks. For example, on the MMMU image classification benchmark, InternVL achieves a top-1 accuracy of 51.6%, which is higher than GPT-4V and Gemini Pro. On the DocVQA question answering benchmark, InternVL achieves a score of 82.2%, which is also higher than GPT-4V and Gemini Pro. InternVL is open-sourced and available on Hugging Face. It can be used for a variety of applications, including image classification, object detection, semantic segmentation, image captioning, and question answering.
![clarifai-python Screenshot](/screenshots_githubs/Clarifai-clarifai-python.jpg)
clarifai-python
The Clarifai Python SDK offers a comprehensive set of tools to integrate Clarifai's AI platform to leverage computer vision capabilities like classification , detection ,segementation and natural language capabilities like classification , summarisation , generation , Q&A ,etc into your applications. With just a few lines of code, you can leverage cutting-edge artificial intelligence to unlock valuable insights from visual and textual content.
![X-AnyLabeling Screenshot](/screenshots_githubs/CVHub520-X-AnyLabeling.jpg)
X-AnyLabeling
X-AnyLabeling is a robust annotation tool that seamlessly incorporates an AI inference engine alongside an array of sophisticated features. Tailored for practical applications, it is committed to delivering comprehensive, industrial-grade solutions for image data engineers. This tool excels in swiftly and automatically executing annotations across diverse and intricate tasks.
![ailia-models Screenshot](/screenshots_githubs/axinc-ai-ailia-models.jpg)
ailia-models
The collection of pre-trained, state-of-the-art AI models. ailia SDK is a self-contained, cross-platform, high-speed inference SDK for AI. The ailia SDK provides a consistent C++ API across Windows, Mac, Linux, iOS, Android, Jetson, and Raspberry Pi platforms. It also supports Unity (C#), Python, Rust, Flutter(Dart) and JNI for efficient AI implementation. The ailia SDK makes extensive use of the GPU through Vulkan and Metal to enable accelerated computing. # Supported models 323 models as of April 8th, 2024
![edenai-apis Screenshot](/screenshots_githubs/edenai-edenai-apis.jpg)
edenai-apis
Eden AI aims to simplify the use and deployment of AI technologies by providing a unique API that connects to all the best AI engines. With the rise of **AI as a Service** , a lot of companies provide off-the-shelf trained models that you can access directly through an API. These companies are either the tech giants (Google, Microsoft , Amazon) or other smaller, more specialized companies, and there are hundreds of them. Some of the most known are : DeepL (translation), OpenAI (text and image analysis), AssemblyAI (speech analysis). There are **hundreds of companies** doing that. We're regrouping the best ones **in one place** !
![NanoLLM Screenshot](/screenshots_githubs/dusty-nv-NanoLLM.jpg)
NanoLLM
NanoLLM is a tool designed for optimized local inference for Large Language Models (LLMs) using HuggingFace-like APIs. It supports quantization, vision/language models, multimodal agents, speech, vector DB, and RAG. The tool aims to provide efficient and effective processing for LLMs on local devices, enhancing performance and usability for various AI applications.
![open-ai Screenshot](/screenshots_githubs/orhanerday-open-ai.jpg)
open-ai
Open AI is a powerful tool for artificial intelligence research and development. It provides a wide range of machine learning models and algorithms, making it easier for developers to create innovative AI applications. With Open AI, users can explore cutting-edge technologies such as natural language processing, computer vision, and reinforcement learning. The platform offers a user-friendly interface and comprehensive documentation to support users in building and deploying AI solutions. Whether you are a beginner or an experienced AI practitioner, Open AI offers the tools and resources you need to accelerate your AI projects and stay ahead in the rapidly evolving field of artificial intelligence.
For similar jobs
![promptflow Screenshot](/screenshots_githubs/microsoft-promptflow.jpg)
promptflow
**Prompt flow** is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality.
![deepeval Screenshot](/screenshots_githubs/confident-ai-deepeval.jpg)
deepeval
DeepEval is a simple-to-use, open-source LLM evaluation framework specialized for unit testing LLM outputs. It incorporates various metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., and runs locally on your machine for evaluation. It provides a wide range of ready-to-use evaluation metrics, allows for creating custom metrics, integrates with any CI/CD environment, and enables benchmarking LLMs on popular benchmarks. DeepEval is designed for evaluating RAG and fine-tuning applications, helping users optimize hyperparameters, prevent prompt drifting, and transition from OpenAI to hosting their own Llama2 with confidence.
![MegaDetector Screenshot](/screenshots_githubs/agentmorris-MegaDetector.jpg)
MegaDetector
MegaDetector is an AI model that identifies animals, people, and vehicles in camera trap images (which also makes it useful for eliminating blank images). This model is trained on several million images from a variety of ecosystems. MegaDetector is just one of many tools that aims to make conservation biologists more efficient with AI. If you want to learn about other ways to use AI to accelerate camera trap workflows, check out our of the field, affectionately titled "Everything I know about machine learning and camera traps".
![leapfrogai Screenshot](/screenshots_githubs/defenseunicorns-leapfrogai.jpg)
leapfrogai
LeapfrogAI is a self-hosted AI platform designed to be deployed in air-gapped resource-constrained environments. It brings sophisticated AI solutions to these environments by hosting all the necessary components of an AI stack, including vector databases, model backends, API, and UI. LeapfrogAI's API closely matches that of OpenAI, allowing tools built for OpenAI/ChatGPT to function seamlessly with a LeapfrogAI backend. It provides several backends for various use cases, including llama-cpp-python, whisper, text-embeddings, and vllm. LeapfrogAI leverages Chainguard's apko to harden base python images, ensuring the latest supported Python versions are used by the other components of the stack. The LeapfrogAI SDK provides a standard set of protobuffs and python utilities for implementing backends and gRPC. LeapfrogAI offers UI options for common use-cases like chat, summarization, and transcription. It can be deployed and run locally via UDS and Kubernetes, built out using Zarf packages. LeapfrogAI is supported by a community of users and contributors, including Defense Unicorns, Beast Code, Chainguard, Exovera, Hypergiant, Pulze, SOSi, United States Navy, United States Air Force, and United States Space Force.
![llava-docker Screenshot](/screenshots_githubs/ashleykleynhans-llava-docker.jpg)
llava-docker
This Docker image for LLaVA (Large Language and Vision Assistant) provides a convenient way to run LLaVA locally or on RunPod. LLaVA is a powerful AI tool that combines natural language processing and computer vision capabilities. With this Docker image, you can easily access LLaVA's functionalities for various tasks, including image captioning, visual question answering, text summarization, and more. The image comes pre-installed with LLaVA v1.2.0, Torch 2.1.2, xformers 0.0.23.post1, and other necessary dependencies. You can customize the model used by setting the MODEL environment variable. The image also includes a Jupyter Lab environment for interactive development and exploration. Overall, this Docker image offers a comprehensive and user-friendly platform for leveraging LLaVA's capabilities.
![carrot Screenshot](/screenshots_githubs/xx025-carrot.jpg)
carrot
The 'carrot' repository on GitHub provides a list of free and user-friendly ChatGPT mirror sites for easy access. The repository includes sponsored sites offering various GPT models and services. Users can find and share sites, report errors, and access stable and recommended sites for ChatGPT usage. The repository also includes a detailed list of ChatGPT sites, their features, and accessibility options, making it a valuable resource for ChatGPT users seeking free and unlimited GPT services.
![TrustLLM Screenshot](/screenshots_githubs/HowieHwong-TrustLLM.jpg)
TrustLLM
TrustLLM is a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. The document explains how to use the trustllm python package to help you assess the performance of your LLM in trustworthiness more quickly. For more details about TrustLLM, please refer to project website.
![AI-YinMei Screenshot](/screenshots_githubs/worm128-AI-YinMei.jpg)
AI-YinMei
AI-YinMei is an AI virtual anchor Vtuber development tool (N card version). It supports fastgpt knowledge base chat dialogue, a complete set of solutions for LLM large language models: [fastgpt] + [one-api] + [Xinference], supports docking bilibili live broadcast barrage reply and entering live broadcast welcome speech, supports Microsoft edge-tts speech synthesis, supports Bert-VITS2 speech synthesis, supports GPT-SoVITS speech synthesis, supports expression control Vtuber Studio, supports painting stable-diffusion-webui output OBS live broadcast room, supports painting picture pornography public-NSFW-y-distinguish, supports search and image search service duckduckgo (requires magic Internet access), supports image search service Baidu image search (no magic Internet access), supports AI reply chat box [html plug-in], supports AI singing Auto-Convert-Music, supports playlist [html plug-in], supports dancing function, supports expression video playback, supports head touching action, supports gift smashing action, supports singing automatic start dancing function, chat and singing automatic cycle swing action, supports multi scene switching, background music switching, day and night automatic switching scene, supports open singing and painting, let AI automatically judge the content.