
DeepResearch
Tongyi Deep Research, the Leading Open-source Deep Research Agent
Stars: 14855

Tongyi DeepResearch is an agentic large language model with 30.5 billion total parameters, designed for long-horizon, deep information-seeking tasks. It demonstrates state-of-the-art performance across various search benchmarks. The model features a fully automated synthetic data generation pipeline, large-scale continual pre-training on agentic data, end-to-end reinforcement learning, and compatibility with two inference paradigms. Users can download the model directly from HuggingFace or ModelScope. The repository also provides benchmark evaluation scripts and information on the Deep Research Agent Family.
README:
🤗 HuggingFace |
ModelScope | 💬 WeChat(微信)
👏 Welcome to try Tongyi DeepResearch via our Modelscope online demo or 🤗 Huggingface online demo or
bailian service!
[!NOTE] This demo is for quick exploration only. Response times may vary or fail intermittently due to model latency and tool QPS limits. For a stable experience we recommend local deployment; for a production-ready service, visit
bailian and follow the guided setup.
We present Tongyi DeepResearch, an agentic large language model featuring 30.5 billion total parameters, with only 3.3 billion activated per token. Developed by Tongyi Lab, the model is specifically designed for long-horizon, deep information-seeking tasks. Tongyi DeepResearch demonstrates state-of-the-art performance across a range of agentic search benchmarks, including Humanity's Last Exam, BrowserComp, BrowserComp-ZH, WebWalkerQA,xbench-DeepSearch, FRAMES and SimpleQA.
Tongyi DeepResearch builds upon our previous work on the
WebAgent project.
More details can be found in our 📰 Tech Blog.
- ⚙️ Fully automated synthetic data generation pipeline: We design a highly scalable data synthesis pipeline, which is fully automatic and empowers agentic pre-training, supervised fine-tuning, and reinforcement learning.
- 🔄 Large-scale continual pre-training on agentic data: Leveraging diverse, high-quality agentic interaction data to extend model capabilities, maintain freshness, and strengthen reasoning performance.
- 🔁 End-to-end reinforcement learning: We employ a strictly on-policy RL approach based on a customized Group Relative Policy Optimization framework, with token-level policy gradients, leave-one-out advantage estimation, and selective filtering of negative samples to stabilize training in a non‑stationary environment.
- 🤖 Agent Inference Paradigm Compatibility: At inference, Tongyi DeepResearch is compatible with two inference paradigms: ReAct, for rigorously evaluating the model's core intrinsic abilities, and an IterResearch-based 'Heavy' mode, which uses a test-time scaling strategy to unlock the model's maximum performance ceiling.
You can directly download the model by following the links below.
Model | Download Links | Model Size | Context Length |
---|---|---|---|
Tongyi-DeepResearch-30B-A3B |
🤗 HuggingFace 🤖 ModelScope |
30B-A3B | 128K |
[2025/09/20]🚀 Tongyi-DeepResearch-30B-A3B is now on OpenRouter! Follow the Quick-start guide.
[2025/09/17]🔥 We have released Tongyi-DeepResearch-30B-A3B.
This guide provides instructions for setting up the environment and running inference scripts located in the inference folder.
- Recommended Python version: 3.10.0 (using other versions may cause dependency issues).
- It is strongly advised to create an isolated environment using
conda
orvirtualenv
.
# Example with Conda
conda create -n react_infer_env python=3.10.0
conda activate react_infer_env
Install the required dependencies:
pip install -r requirements.txt
Configure your API keys and settings by copying the example environment file:
# Copy the example environment file
cp .env.example .env
Edit the .env
file and provide your actual API keys and configuration values:
- SERPER_KEY_ID: Get your key from Serper.dev for web search and Google Scholar
- JINA_API_KEYS: Get your key from Jina.ai for web page reading
- API_KEY/API_BASE: OpenAI-compatible API for page summarization from OpenAI
- DASHSCOPE_API_KEY: Get your key from Dashscope for file parsing
- SANDBOX_FUSION_ENDPOINT: Python interpreter sandbox endpoints (see SandboxFusion)
- MODEL_PATH: Path to your model weights
- DATASET: Name of your evaluation dataset
- OUTPUT_PATH: Directory for saving results
Note: The
.env
file is gitignored, so your secrets will not be committed to the repository.
The system supports two input file formats: JSON and JSONL.
Option 1: JSONL Format (recommended)
- Create your data file with
.jsonl
extension (e.g.,my_questions.jsonl
) - Each line must be a valid JSON object with
question
andanswer
keys:{"question": "What is the capital of France?", "answer": "Paris"} {"question": "Explain quantum computing", "answer": ""}
Option 2: JSON Format
- Create your data file with
.json
extension (e.g.,my_questions.json
) - File must contain a JSON array of objects, each with
question
andanswer
keys:[ {"question": "What is the capital of France?", "answer": "Paris"}, {"question": "Explain quantum computing", "answer": ""} ]
Important Note: The answer
field contains the ground truth/reference answer used for evaluation. The system generates its own responses to the questions, and these reference answers are used to automatically judge the quality of the generated responses during benchmark evaluation.
- If using the file parser tool, prepend the filename to the
question
field - Place referenced files in
eval_data/file_corpus/
directory - Example:
{"question": "report.pdf What are the key findings?", "answer": "..."}
project_root/
├── eval_data/
│ ├── my_questions.jsonl # Your evaluation data
│ └── file_corpus/ # Referenced documents
│ ├── report.pdf
│ └── data.xlsx
- Open
run_react_infer.sh
and modify the following variables as instructed in the comments:-
MODEL_PATH
- path to the local or remote model weights. -
DATASET
- full path to your evaluation file, e.g.eval_data/my_questions.jsonl
or/path/to/my_questions.json
. -
OUTPUT_PATH
- path for saving the prediction results, e.g../outputs
.
-
- Depending on the tools you enable (retrieval, calculator, web search, etc.), provide the required
API_KEY
,BASE_URL
, or other credentials. Each key is explained inline in the bash script.
bash run_react_infer.sh
With these steps, you can fully prepare the environment, configure the dataset, and run the model. For more details, consult the inline comments in each script or open an issue.
Tongyi-DeepResearch-30B-A3B is now available at OpenRouter. You can run the inference without any GPUs.
You need to modify the following in the file inference/react_agent.py:
- In the call_server function: Set the API key and URL to your OpenRouter account’s API and URL.
- Change the model name to alibaba/tongyi-deepresearch-30b-a3b.
- Adjust the content concatenation way as described in the comments on lines 88–90.
We provide benchmark evaluation scripts for various datasets. Please refer to the evaluation scripts directory for more details.
Tongyi DeepResearch also has an extensive deep research agent family. You can find more information in the following paper:
[1] WebWalker: Benchmarking LLMs in Web Traversal (ACL 2025)
[2] WebDancer: Towards Autonomous Information Seeking Agency (NeurIPS 2025)
[3] WebSailor: Navigating Super-human Reasoning for Web Agent
[4] WebShaper: Agentically Data Synthesizing via Information-Seeking Formalization
[5] WebWatcher: Breaking New Frontier of Vision-Language Deep Research Agent
[6] WebResearcher: Unleashing unbounded reasoning capability in Long-Horizon Agents
[7] ReSum: Unlocking Long-Horizon Search Intelligence via Context Summarization
[8] WebWeaver: Structuring Web-Scale Evidence with Dynamic Outlines for Open-Ended Deep Research
[9] WebSailor-V2: Bridging the Chasm to Proprietary Agents via Synthetic Data and Scalable Reinforcement Learning
[10] Scaling Agents via Continual Pre-training
[11] Towards General Agentic Intelligence via Environment Scaling
🔥🔥🔥 We are hiring! Research intern positions are open (based in Hangzhou、Beijing、Shanghai)
📚 Research Area:Web Agent, Search Agent, Agent RL, MultiAgent RL, Agentic RAG
☎️ Contact:[email protected]
For communications, please contact Yong Jiang ([email protected]).
@misc{tongyidr,
author={Tongyi DeepResearch Team},
title={Tongyi-DeepResearch},
year={2025},
howpublished={\url{https://github.com/Alibaba-NLP/DeepResearch}}
}
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for DeepResearch
Similar Open Source Tools

DeepResearch
Tongyi DeepResearch is an agentic large language model with 30.5 billion total parameters, designed for long-horizon, deep information-seeking tasks. It demonstrates state-of-the-art performance across various search benchmarks. The model features a fully automated synthetic data generation pipeline, large-scale continual pre-training on agentic data, end-to-end reinforcement learning, and compatibility with two inference paradigms. Users can download the model directly from HuggingFace or ModelScope. The repository also provides benchmark evaluation scripts and information on the Deep Research Agent Family.

TempCompass
TempCompass is a benchmark designed to evaluate the temporal perception ability of Video LLMs. It encompasses a diverse set of temporal aspects and task formats to comprehensively assess the capability of Video LLMs in understanding videos. The benchmark includes conflicting videos to prevent models from relying on single-frame bias and language priors. Users can clone the repository, install required packages, prepare data, run inference using examples like Video-LLaVA and Gemini, and evaluate the performance of their models across different tasks such as Multi-Choice QA, Yes/No QA, Caption Matching, and Caption Generation.

easy-dataset
Easy Dataset is a specialized application designed to streamline the creation of fine-tuning datasets for Large Language Models (LLMs). It offers an intuitive interface for uploading domain-specific files, intelligently splitting content, generating questions, and producing high-quality training data for model fine-tuning. With Easy Dataset, users can transform domain knowledge into structured datasets compatible with all OpenAI-format compatible LLM APIs, making the fine-tuning process accessible and efficient.

Qmedia
QMedia is an open-source multimedia AI content search engine designed specifically for content creators. It provides rich information extraction methods for text, image, and short video content. The tool integrates unstructured text, image, and short video information to build a multimodal RAG content Q&A system. Users can efficiently search for image/text and short video materials, analyze content, provide content sources, and generate customized search results based on user interests and needs. QMedia supports local deployment for offline content search and Q&A for private data. The tool offers features like content cards display, multimodal content RAG search, and pure local multimodal models deployment. Users can deploy different types of models locally, manage language models, feature embedding models, image models, and video models. QMedia aims to spark new ideas for content creation and share AI content creation concepts in an open-source manner.

llama-assistant
Llama Assistant is an AI-powered assistant that helps with daily tasks, such as voice recognition, natural language processing, summarizing text, rephrasing sentences, answering questions, and more. It runs offline on your local machine, ensuring privacy by not sending data to external servers. The project is a work in progress with regular feature additions.

Free-GPT4-WEB-API
FreeGPT4-WEB-API is a Python server that allows you to have a self-hosted GPT-4 Unlimited and Free WEB API, via the latest Bing's AI. It uses Flask and GPT4Free libraries. GPT4Free provides an interface to the Bing's GPT-4. The server can be configured by editing the `FreeGPT4_Server.py` file. You can change the server's port, host, and other settings. The only cookie needed for the Bing model is `_U`.

obsei
Obsei is an open-source, low-code, AI powered automation tool that consists of an Observer to collect unstructured data from various sources, an Analyzer to analyze the collected data with various AI tasks, and an Informer to send analyzed data to various destinations. The tool is suitable for scheduled jobs or serverless applications as all Observers can store their state in databases. Obsei is still in alpha stage, so caution is advised when using it in production. The tool can be used for social listening, alerting/notification, automatic customer issue creation, extraction of deeper insights from feedbacks, market research, dataset creation for various AI tasks, and more based on creativity.

OSA
OSA (Open-Source-Advisor) is a tool designed to improve the quality of scientific open source projects by automating the generation of README files, documentation, CI/CD scripts, and providing advice and recommendations for repositories. It supports various LLMs accessible via API, local servers, or osa_bot hosted on ITMO servers. OSA is currently under development with features like README file generation, documentation generation, automatic implementation of changes, LLM integration, and GitHub Action Workflow generation. It requires Python 3.10 or higher and tokens for GitHub/GitLab/Gitverse and LLM API key. Users can install OSA using PyPi or build from source, and run it using CLI commands or Docker containers.

educhain
Educhain is a powerful Python package that leverages Generative AI to create engaging and personalized educational content. It enables users to generate multiple-choice questions, create lesson plans, and support various LLM models. Users can export questions to JSON, PDF, and CSV formats, customize prompt templates, and generate questions from text, PDF, URL files, youtube videos, and images. Educhain outperforms traditional methods in content generation speed and quality. It offers advanced configuration options and has a roadmap for future enhancements, including integration with popular Learning Management Systems and a mobile app for content generation on-the-go.

DeepMesh
DeepMesh is an auto-regressive artist-mesh creation tool that utilizes reinforcement learning to generate high-quality meshes conditioned on a given point cloud. It offers pretrained weights and allows users to generate obj/ply files based on specific input parameters. The tool has been tested on Ubuntu 22 with CUDA 11.8 and supports A100, A800, and A6000 GPUs. Users can clone the repository, create a conda environment, install pretrained model weights, and use command line inference to generate meshes.

superlinked
Superlinked is a compute framework for information retrieval and feature engineering systems, focusing on converting complex data into vector embeddings for RAG, Search, RecSys, and Analytics stack integration. It enables custom model performance in machine learning with pre-trained model convenience. The tool allows users to build multimodal vectors, define weights at query time, and avoid postprocessing & rerank requirements. Users can explore the computational model through simple scripts and python notebooks, with a future release planned for production usage with built-in data infra and vector database integrations.

DB-GPT
DB-GPT is a personal database administrator that can solve database problems by reading documents, using various tools, and writing analysis reports. It is currently undergoing an upgrade. **Features:** * **Online Demo:** * Import documents into the knowledge base * Utilize the knowledge base for well-founded Q&A and diagnosis analysis of abnormal alarms * Send feedbacks to refine the intermediate diagnosis results * Edit the diagnosis result * Browse all historical diagnosis results, used metrics, and detailed diagnosis processes * **Language Support:** * English (default) * Chinese (add "language: zh" in config.yaml) * **New Frontend:** * Knowledgebase + Chat Q&A + Diagnosis + Report Replay * **Extreme Speed Version for localized llms:** * 4-bit quantized LLM (reducing inference time by 1/3) * vllm for fast inference (qwen) * Tiny LLM * **Multi-path extraction of document knowledge:** * Vector database (ChromaDB) * RESTful Search Engine (Elasticsearch) * **Expert prompt generation using document knowledge** * **Upgrade the LLM-based diagnosis mechanism:** * Task Dispatching -> Concurrent Diagnosis -> Cross Review -> Report Generation * Synchronous Concurrency Mechanism during LLM inference * **Support monitoring and optimization tools in multiple levels:** * Monitoring metrics (Prometheus) * Flame graph in code level * Diagnosis knowledge retrieval (dbmind) * Logical query transformations (Calcite) * Index optimization algorithms (for PostgreSQL) * Physical operator hints (for PostgreSQL) * Backup and Point-in-time Recovery (Pigsty) * **Continuously updated papers and experimental reports** This project is constantly evolving with new features. Don't forget to star ⭐ and watch 👀 to stay up to date.

evalscope
Eval-Scope is a framework designed to support the evaluation of large language models (LLMs) by providing pre-configured benchmark datasets, common evaluation metrics, model integration, automatic evaluation for objective questions, complex task evaluation using expert models, reports generation, visualization tools, and model inference performance evaluation. It is lightweight, easy to customize, supports new dataset integration, model hosting on ModelScope, deployment of locally hosted models, and rich evaluation metrics. Eval-Scope also supports various evaluation modes like single mode, pairwise-baseline mode, and pairwise (all) mode, making it suitable for assessing and improving LLMs.

duolingo-clone
Lingo is an interactive platform for language learning that provides a modern UI/UX experience. It offers features like courses, quests, and a shop for users to engage with. The tech stack includes React JS, Next JS, Typescript, Tailwind CSS, Vercel, and Postgresql. Users can contribute to the project by submitting changes via pull requests. The platform utilizes resources from CodeWithAntonio, Kenney Assets, Freesound, Elevenlabs AI, and Flagpack. Key dependencies include @clerk/nextjs, @neondatabase/serverless, @radix-ui/react-avatar, and more. Users can follow the project creator on GitHub and Twitter, as well as subscribe to their YouTube channel for updates. To learn more about Next.js, users can refer to the Next.js documentation and interactive tutorial.

llama-assistant
Llama Assistant is a local AI assistant that respects your privacy. It is an AI-powered assistant that can recognize your voice, process natural language, and perform various actions based on your commands. It can help with tasks like summarizing text, rephrasing sentences, answering questions, writing emails, and more. The assistant runs offline on your local machine, ensuring privacy by not sending data to external servers. It supports voice recognition, natural language processing, and customizable UI with adjustable transparency. The project is a work in progress with new features being added regularly.

llm-interface
LLM Interface is an npm module that streamlines interactions with various Large Language Model (LLM) providers in Node.js applications. It offers a unified interface for switching between providers and models, supporting 36 providers and hundreds of models. Features include chat completion, streaming, error handling, extensibility, response caching, retries, JSON output, and repair. The package relies on npm packages like axios, @google/generative-ai, dotenv, jsonrepair, and loglevel. Installation is done via npm, and usage involves sending prompts to LLM providers. Tests can be run using npm test. Contributions are welcome under the MIT License.
For similar tasks

DeepResearch
Tongyi DeepResearch is an agentic large language model with 30.5 billion total parameters, designed for long-horizon, deep information-seeking tasks. It demonstrates state-of-the-art performance across various search benchmarks. The model features a fully automated synthetic data generation pipeline, large-scale continual pre-training on agentic data, end-to-end reinforcement learning, and compatibility with two inference paradigms. Users can download the model directly from HuggingFace or ModelScope. The repository also provides benchmark evaluation scripts and information on the Deep Research Agent Family.

iris_android
This repository contains an offline Android chat application based on llama.cpp example. Users can install, download models, and run the app completely offline and privately. To use the app, users need to go to the releases page, download and install the app. Building the app requires downloading Android Studio, cloning the repository, and importing it into Android Studio. The app can be run offline by following specific steps such as enabling developer options, wireless debugging, and downloading the stable LM model. The project is maintained by Nerve Sparks and contributions are welcome through creating feature branches and pull requests.

podman-desktop-extension-ai-lab
Podman AI Lab is an open source extension for Podman Desktop designed to work with Large Language Models (LLMs) on a local environment. It features a recipe catalog with common AI use cases, a curated set of open source models, and a playground for learning, prototyping, and experimentation. Users can quickly and easily get started bringing AI into their applications without depending on external infrastructure, ensuring data privacy and security.

llamafile-docker
This repository, llamafile-docker, automates the process of checking for new releases of Mozilla-Ocho/llamafile, building a Docker image with the latest version, and pushing it to Docker Hub. Users can download a pre-trained model in gguf format and use the Docker image to interact with the model via a server or CLI version. Contributions are welcome under the Apache 2.0 license.

hordelib
horde-engine is a wrapper around ComfyUI designed to run inference pipelines visually designed in the ComfyUI GUI. It enables users to design inference pipelines in ComfyUI and then call them programmatically, maintaining compatibility with the existing horde implementation. The library provides features for processing Horde payloads, initializing the library, downloading and validating models, and generating images based on input data. It also includes custom nodes for preprocessing and tasks such as face restoration and QR code generation. The project depends on various open source projects and bundles some dependencies within the library itself. Users can design ComfyUI pipelines, convert them to the backend format, and run them using the run_image_pipeline() method in hordelib.comfy.Comfy(). The project is actively developed and tested using git, tox, and a specific model directory structure.

HuggingFaceModelDownloader
The HuggingFace Model Downloader is a utility tool for downloading models and datasets from the HuggingFace website. It offers multithreaded downloading for LFS files and ensures the integrity of downloaded models with SHA256 checksum verification. The tool provides features such as nested file downloading, filter downloads for specific LFS model files, support for HuggingFace Access Token, and configuration file support. It can be used as a library or a single binary for easy model downloading and inference in projects.

ollama-r
The Ollama R library provides an easy way to integrate R with Ollama for running language models locally on your machine. It supports working with standard data structures for different LLMs, offers various output formats, and enables integration with other libraries/tools. The library uses the Ollama REST API and requires the Ollama app to be installed, with GPU support for accelerating LLM inference. It is inspired by Ollama Python and JavaScript libraries, making it familiar for users of those languages. The installation process involves downloading the Ollama app, installing the 'ollamar' package, and starting the local server. Example usage includes testing connection, downloading models, generating responses, and listing available models.

djl
Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. It is designed to be easy to get started with and simple to use for Java developers. DJL provides a native Java development experience and allows users to integrate machine learning and deep learning models with their Java applications. The framework is deep learning engine agnostic, enabling users to switch engines at any point for optimal performance. DJL's ergonomic API interface guides users with best practices to accomplish deep learning tasks, such as running inference and training neural networks.
For similar jobs

weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.

agentcloud
AgentCloud is an open-source platform that enables companies to build and deploy private LLM chat apps, empowering teams to securely interact with their data. It comprises three main components: Agent Backend, Webapp, and Vector Proxy. To run this project locally, clone the repository, install Docker, and start the services. The project is licensed under the GNU Affero General Public License, version 3 only. Contributions and feedback are welcome from the community.

VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.

kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.

Azure-Analytics-and-AI-Engagement
The Azure-Analytics-and-AI-Engagement repository provides packaged Industry Scenario DREAM Demos with ARM templates (Containing a demo web application, Power BI reports, Synapse resources, AML Notebooks etc.) that can be deployed in a customer’s subscription using the CAPE tool within a matter of few hours. Partners can also deploy DREAM Demos in their own subscriptions using DPoC.

executorch
ExecuTorch is an end-to-end solution for enabling on-device inference capabilities across mobile and edge devices including wearables, embedded devices and microcontrollers. It is part of the PyTorch Edge ecosystem and enables efficient deployment of PyTorch models to edge devices. Key value propositions of ExecuTorch are: * **Portability:** Compatibility with a wide variety of computing platforms, from high-end mobile phones to highly constrained embedded systems and microcontrollers. * **Productivity:** Enabling developers to use the same toolchains and SDK from PyTorch model authoring and conversion, to debugging and deployment to a wide variety of platforms. * **Performance:** Providing end users with a seamless and high-performance experience due to a lightweight runtime and utilizing full hardware capabilities such as CPUs, NPUs, and DSPs.

autogen
AutoGen is a framework that enables the development of LLM applications using multiple agents that can converse with each other to solve tasks. AutoGen agents are customizable, conversable, and seamlessly allow human participation. They can operate in various modes that employ combinations of LLMs, human inputs, and tools.

tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.