tafrigh
تفريغ النصوص وإنشاء ملفات SRT و VTT باستخدام نماذج Whisper وتقنية wit.ai.
Stars: 92
Tafrigh is a tool for transcribing visual and audio content into text using advanced artificial intelligence techniques provided by OpenAI and wit.ai. It allows direct downloading of content from platforms like YouTube, Facebook, Twitter, and SoundCloud, and provides various output formats such as txt, srt, vtt, csv, tsv, and json. Users can install Tafrigh via pip or by cloning the GitHub repository and using Poetry. The tool supports features like skipping transcription if output exists, specifying playlist items, setting download retries, using different Whisper models, and utilizing wit.ai for transcription. Tafrigh can be used via command line or programmatically, and Docker images are available for easy usage.
README:
تفريغ المواد المرئية أو المسموعة إلى نصوص.
يمكنك الاطلاع على أمثلة تم تفريغها باستخدام تفريغ من هنا.
- تفريغ المواد المرئية والمسموعة إلى نصوص باستخدام أحدث تقنيات الذكاء الاصطناعي المقدمة من شركة OpenAI
- إمكانية تفريغ المواد باستخدام تقنيات wit.ai المقدمة من شركة Facebook
- تنزيل المواد بشكل مباشر من YouTube و Facebook و Twitter و SoundCloud وغيرها
- توفير صيَغ مخرجات مختلفة كـ
txt
وsrt
وvtt
وcsv
وtsv
وjson
- يُفضّل وجود معالج رسوميات قوي في حاسبك في حال استخدام نماذج Whisper
- تثبيت لغة Python بإصدار 3.10 أو أعلى على حاسبك
- تثبيت برمجية FFmpeg على حاسبك
- تثبيت برمجية yt-dlp على حاسبك
يمكنك تثبيت تفريغ من خلال pip
باستخدام الأمر: pip install tafrigh[wit,whisper]
يمكنك تحديد الاعتماديات التي تريد تثبيتها حسب نوع التقنية التي تريد استخدامها من خلال كتابة wit
أو whisper
بين قوسين مربعين كما هو موضّح في الأمر السابق.
- قم بتنزيل هذا المستودع من خلال الضغط على Code ثم Download ZIP أو من خلال تنفيذ الأمر التالي:
git clone [email protected]:ieasybooks/tafrigh.git
- قم بفك ضغط الملف إذا قمت بتنزيله بصيغة ZIP وتوجّه إلى مجلد المشروع
- قم بتنفيذ الأمر التالي لتثبيت تفريغ:
poetry install
أضف -E wit
أو -E whisper
لتحديد الاعتماديات المراد تثبيتها.
-
المدخلات
- الروابط أو مسارات الملفات: يجب تمرير الروابط أو مسارات الملفات للمواد المُراد تفريغها بعد اسم أداة تفريغ بشكل مباشر. على سبيل المثال:
tafrigh "https://yout..." "https://yout..." "C:\Users\ieasybooks\leactue.wav"
- تخطي عملية التفريغ في حال وجود المخرجات مسبقًا: يمكن تمرير الاختيار
--skip_if_output_exist
لتخطي عملية التفريغ إذا كانت المخرجات المطلوبة موجودة بالفعل في مجلد الإخراج المحدد - المواد المُراد تفريفها من قائمة التشغيل: يمكن تحديد نطاق معين من المواد ليتم تفريغه من قائمة التشغيل من خلال الاختيار
--playlist_items
من خلال تمرير قيمة على صيغة"[START]:[STOP][:STEP]"
. على سبيل المثال، عند تمرير2:5
سيتم تنزيل المواد من2
إلى5
من قائمة التشغيل. هذا الاختيار يُؤثّر على كل قوائم التشغيل التي يتم تمريرها كمدخلات لتفريغ - عدد مرات محاولة إعادة تحميل المواد: قد يفشل تحميل بعض المواد عند تحميل قائمة تشغيل كاملة باستخدام مكتبة
yt-dlp
، يمكن من خلال الاختيار--download_retries
تحديد عدد مرات محاولة إعادة التحميل في حال فشل تحميل إحدى المواد. القيمة الافتراضية هي3
- الروابط أو مسارات الملفات: يجب تمرير الروابط أو مسارات الملفات للمواد المُراد تفريغها بعد اسم أداة تفريغ بشكل مباشر. على سبيل المثال:
-
خيارات تقنية Whisper
-
النموذج: يمكنك تحديد النموذج من خلال الاختيار
--model_name_or_path
. النماذج المتوفرة:-
tiny.en
(لغة انجليزية فقط) -
tiny
(الأقل دقة) -
base.en
(لغة انجليزية فقط) base
-
small.en
(لغة انجليزية فقط) -
small
(الاختيار الإفتراضي) -
medium.en
(لغة انجليزية فقط) medium
large-v1
large-v2
large-v3
-
large
(الأعلى دقة) - اسم نموذج Whisper موجود على HuggingFace Hub
- مسار نموذج Whisper تم تنزيله مسبقًا
- مسار نموذج Whisper تم تحويله باستخدام أداة
ct2-transformers-converter
لاستخدام المكتبة السريعةfaster-whisper
-
-
المهمة: يمكنك تحديد المهمة من خلال الاختيار
--task
. المهمات المتوفرة:-
transcribe
: تحويل الصوت إلى نص (الاختيار الإفتراضي) -
translation
: ترجمة الصوت إلى نص باللغة الانجليزية
-
- اللغة: يمكنك تحديد لغة الصوت من خلال الاختيار
--language
. على سبيل المثال، لتحديد اللغة العربية قم بتمريرar
. إذا لم يتم تحديد اللغة، سيتم التعرف عليها تلقائيا - استخدام نسخة أسرع من نماذج Whisper: من خلال تمرير الاختيار
--use_faster_whisper
سيتم استخدام النسخة الأسرع من نماذج Whisper - حجم نطاق البحث: يمكنك تحسين النتائج باستخدام اختيار
--beam_size
والذي يسمح لك بإجبار النموذج على البحث في نطاق أوسع من الكلمات أثناء إنشاء النص. القيمة الإفتراضية هي5
-
طريقة ضغط النموذج: يمكنك تحديد الطريقة التي تم بها ضغط النموذج أثناء تحويله باستخدام أداة
ct2-transformers-converter
من خلال تمرير الاختيار--ct2_compute_type
. الطرق المتوفرة:-
default
(الاختيار الإفتراضي) int8
int8_float16
int16
float16
-
-
النموذج: يمكنك تحديد النموذج من خلال الاختيار
-
خيارات تقنية Wit
- مفاتيح wit.ai: يمكنك استخدام تقنيات wit.ai لتفريغ المواد إلى نصوص من خلال تمرير المفتاح أو المفاتيح الخاصة بك للاختيار
--wit_client_access_tokens
. إذا تم تمرير هذا الاختيار، سيتم استخدام wit.ai لتفريغ المواد إلى نصوص. غير ذلك، سيتم استخدام نماذج Whisper - تحديد أقصى مدة للتقطيع: يمكنك تحديد أقصى مدة للتقطيع والتي ستؤثر على طول الجمل في ملفات SRT و VTT من خلال تمرير الاختيار
--max_cutting_duration
. القيمة الافتراضية هي15
- مفاتيح wit.ai: يمكنك استخدام تقنيات wit.ai لتفريغ المواد إلى نصوص من خلال تمرير المفتاح أو المفاتيح الخاصة بك للاختيار
-
المخرجات
- ضغط الأجزاء: يمكنك استخدام الاختيار
--min_words_per_segment
للتحكم في أقل عدد من الكلمات التي يمكن أن تكون داخل جزء واحد من أجزاء التفريغ. القيمة الإفتراضية هي1
، يمكنك تمرير0
لتعطيل هذه الخاصية - يمكنك تمرير الاختيار
--save_files_before_compact
لحفظ الملفات الأصلية قبل أن يتم دمج أجزائها بناء على اختيار--min_words_per_segment
- يمكنك حفظ مخرجات مكتبة
yt-dlp
بصيغةjson
من خلال تمرير الاختيار--save_yt_dlp_responses
- إخراج عينة من الأجزاء بعد الدمج: يمكنك تمرير قيمة للاختيار
--output_sample
للحصول على عينة عشوائية من جميع الأجزاء التي تم تفريغها من كل المواد بعد دمجها بناء على اختيار--min_words_per_segment
. القيمة الافتراضية هي0
، أي أنه لن يتم إخراج أي عينات -
صيغة المخرجات: يمكنك تحديد صيغة المخرجات من خلال الاختيار
--output_formats
. الصيغ المتوفرة:txt
srt
vtt
csv
tsv
json
-
all
(الاختيار الإفتراضي) -
none
(لن يتم إنشاء ملف في حال تمرير هذه الصيغة)
- مجلد المخرجات: يمكنك تحديد مجلد الاخراج من خلال الاختيار
--output_dir
. بشكل تلقائي سيكون المجلد الحالي هو مجلد الاخراج إذا لم يتم تحديده
- ضغط الأجزاء: يمكنك استخدام الاختيار
➜ tafrigh --help
usage: tafrigh [-h] [--version] [--skip_if_output_exist | --no-skip_if_output_exist] [--playlist_items PLAYLIST_ITEMS]
[--download_retries DOWNLOAD_RETRIES] [--verbose | --no-verbose] [-m MODEL_NAME_OR_PATH] [-t {transcribe,translate}]
[-l {af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh}]
[--use_faster_whisper | --no-use_faster_whisper] [--beam_size BEAM_SIZE]
[--ct2_compute_type {default,int8,int8_float16,int16,float16}]
[-w WIT_CLIENT_ACCESS_TOKENS [WIT_CLIENT_ACCESS_TOKENS ...]] [--max_cutting_duration [1-17]]
[--min_words_per_segment MIN_WORDS_PER_SEGMENT] [--save_files_before_compact | --no-save_files_before_compact]
[--save_yt_dlp_responses | --no-save_yt_dlp_responses] [--output_sample OUTPUT_SAMPLE]
[-f {all,txt,srt,vtt,csv,tsv,json,none} [{all,txt,srt,vtt,csv,tsv,json,none} ...]] [-o OUTPUT_DIR]
urls_or_paths [urls_or_paths ...]
options:
-h, --help show this help message and exit
--version show program's version number and exit
Input:
urls_or_paths Video/Playlist URLs or local folder/file(s) to transcribe.
--skip_if_output_exist, --no-skip_if_output_exist
Whether to skip generating the output if the output file already exists.
--playlist_items PLAYLIST_ITEMS
Comma separated playlist_index of the items to download. You can specify a range using "[START]:[STOP][:STEP]".
--download_retries DOWNLOAD_RETRIES
Number of retries for yt-dlp downloads that fail.
--verbose, --no-verbose
Whether to print out the progress and debug messages.
Whisper:
-m MODEL_NAME_OR_PATH, --model_name_or_path MODEL_NAME_OR_PATH
Name or path of the Whisper model to use.
-t {transcribe,translate}, --task {transcribe,translate}
Whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate').
-l {af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh}, --language {af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh}
Language spoken in the audio, skip to perform language detection.
--use_faster_whisper, --no-use_faster_whisper
Whether to use Faster Whisper implementation.
--beam_size BEAM_SIZE
Number of beams in beam search, only applicable when temperature is zero.
--ct2_compute_type {default,int8,int8_float16,int16,float16}
Quantization type applied while converting the model to CTranslate2 format.
Wit:
-w WIT_CLIENT_ACCESS_TOKENS [WIT_CLIENT_ACCESS_TOKENS ...], --wit_client_access_tokens WIT_CLIENT_ACCESS_TOKENS [WIT_CLIENT_ACCESS_TOKENS ...]
List of wit.ai client access tokens. If provided, wit.ai APIs will be used to do the transcription, otherwise
whisper will be used.
--max_cutting_duration [1-17]
The maximum allowed cutting duration. It should be between 1 and 17.
Output:
--min_words_per_segment MIN_WORDS_PER_SEGMENT
The minimum number of words should appear in each transcript segment. Any segment have words count less than
this threshold will be merged with the next one. Pass 0 to disable this behavior.
--save_files_before_compact, --no-save_files_before_compact
Saves the output files before applying the compact logic that is based on --min_words_per_segment.
--save_yt_dlp_responses, --no-save_yt_dlp_responses
Whether to save the yt-dlp library JSON responses or not.
--output_sample OUTPUT_SAMPLE
Samples random compacted segments from the output and generates a CSV file contains the sampled data. Pass 0 to
disable this behavior.
-f {all,txt,srt,vtt,csv,tsv,json,none} [{all,txt,srt,vtt,csv,tsv,json,none} ...], --output_formats {all,txt,srt,vtt,csv,tsv,json,none} [{all,txt,srt,vtt,csv,tsv,json,none} ...]
Format of the output file; if not specified, all available formats will be produced.
-o OUTPUT_DIR, --output_dir OUTPUT_DIR
Directory to save the outputs.
tafrigh "https://youtu.be/dDzxYcEJbgo" \
--model_name_or_path small \
--task transcribe \
--language ar \
--output_dir . \
--output_formats txt srt
tafrigh "https://youtube.com/playlist?list=PLyS-PHSxRDxsLnVsPrIwnsHMO5KgLz7T5" \
--model_name_or_path small \
--task transcribe \
--language ar \
--output_dir . \
--output_formats txt srt
tafrigh "https://youtu.be/4h5P7jXvW98" "https://youtu.be/jpfndVSROpw" \
--model_name_or_path small \
--task transcribe \
--language ar \
--output_dir . \
--output_formats txt srt
يمكنك استخدام مكتبة faster_whisper
التي توفّر سرعة أكبر في تفريغ المواد من خلال تمرير الاختيار --use_faster_whisper
كالتالي:
tafrigh "https://youtu.be/3K5Jh_-UYeA" \
--model_name_or_path large \
--task transcribe \
--language ar \
--use_faster_whisper \
--output_dir . \
--output_formats txt srt
tafrigh "https://youtu.be/dDzxYcEJbgo" \
--wit_client_access_tokens XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX \
--output_dir . \
--output_formats txt srt \
--min_words_per_segment 10 \
--max_cutting_duration 10
tafrigh "https://youtube.com/playlist?list=PLyS-PHSxRDxsLnVsPrIwnsHMO5KgLz7T5" \
--wit_client_access_tokens XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX \
--output_dir . \
--output_formats txt srt \
--min_words_per_segment 10 \
--max_cutting_duration 10
tafrigh "https://youtu.be/4h5P7jXvW98" "https://youtu.be/jpfndVSROpw" \
--wit_client_access_tokens XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX \
--output_dir . \
--output_formats txt srt \
--min_words_per_segment 10 \
--max_cutting_duration 10
يمكنك استخدام تفريغ من خلال الشيفرة البرمجية كالتالي:
from tafrigh import farrigh, Config
if __name__ == '__main__':
config = Config(
input=Config.Input(
urls_or_paths=['https://youtu.be/qFsUwp5iomU'],
skip_if_output_exist=False,
playlist_items='',
download_retries=3,
verbose=False,
),
whisper=Config.Whisper(
model_name_or_path='tiny',
task='transcribe',
language='ar',
use_faster_whisper=True,
beam_size=5,
ct2_compute_type='default',
),
wit=Config.Wit(
wit_client_access_tokens=[],
max_cutting_duration=10,
),
output=Config.Output(
min_words_per_segment=10,
save_files_before_compact=False,
save_yt_dlp_responses=False,
output_sample=0,
output_formats=['txt', 'srt'],
output_dir='.',
),
)
for progress in farrigh(config):
print(progress)
دالة "فَرِّغْ" farrigh
هي عبارة عن مُوَلِّدْ (Generator) يقوم بتوليد الحالة الحالية للتفريغ وأين وصلت العملية. إذا لم تكن بحاجة إلى تتبع هذا الأمر، يمكنك الاستغناء عن حلقة الدوران من خلال استخدام deque
كالتالي:
from collections import deque
from tafrigh import farrigh, Config
if __name__ == '__main__':
config = Config(...)
deque(farrigh(config), maxlen=0)
إذا كان لديك Docker على حاسبك، فالطريقة الأسهل لاستخدام تفريغ هي من خلاله. الأمر التالي يقوم بتنزيل Docker image الخاصة بتفريغ وتفريغ مقطع من YouTube باستخدام تقنيات wit.ai وإخراج النتائج في المجلد الحالي:
docker run -it --rm -v "$PWD:/tafrigh" ghcr.io/ieasybooks/tafrigh \
"https://www.youtube.com/watch?v=qFsUwp5iomU" \
--wit_client_access_tokens XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX \
-f txt srt
يمكنك تمرير أي خيار من خيارات مكتبة تفريغ المُوضّحة في الأعلى.
يوجد أكثر من Docker image يمكنك استخدامها لتفريغ حسب الاعتماديات التي تريد استخدامها:
-
ghcr.io/ieasybooks/tafrigh
: تحتوي على اعتماديات تقنيات wit.ai ونماذج Whisper معا -
ghcr.io/ieasybooks/tafrigh-whisper
: تحتوي على اعتماديات نماذج Whisper فقط -
ghcr.io/ieasybooks/tafrigh-wit
: تحتوي على اعتماديات تقنيات wit.ai فقط
من السلبيات أن نماذج Whisper لن تستطيع استخدام معالج الرسوميات الخاص بحاسبك في حال استخدامك لها من خلال Docker، وهذا أمر نعمل على حله في المستقبل.
تم الاعتماد بشكل كبير على مستودع yt-whisper لإنجاز تفريغ بشكل أسرع.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for tafrigh
Similar Open Source Tools
tafrigh
Tafrigh is a tool for transcribing visual and audio content into text using advanced artificial intelligence techniques provided by OpenAI and wit.ai. It allows direct downloading of content from platforms like YouTube, Facebook, Twitter, and SoundCloud, and provides various output formats such as txt, srt, vtt, csv, tsv, and json. Users can install Tafrigh via pip or by cloning the GitHub repository and using Poetry. The tool supports features like skipping transcription if output exists, specifying playlist items, setting download retries, using different Whisper models, and utilizing wit.ai for transcription. Tafrigh can be used via command line or programmatically, and Docker images are available for easy usage.
ai21-python
The AI21 Labs Python SDK is a comprehensive tool for interacting with the AI21 API. It provides functionalities for chat completions, conversational RAG, token counting, error handling, and support for various cloud providers like AWS, Azure, and Vertex. The SDK offers both synchronous and asynchronous usage, along with detailed examples and documentation. Users can quickly get started with the SDK to leverage AI21's powerful models for various natural language processing tasks.
mediasoup-client-aiortc
mediasoup-client-aiortc is a handler for the aiortc Python library, allowing Node.js applications to connect to a mediasoup server using WebRTC for real-time audio, video, and DataChannel communication. It facilitates the creation of Worker instances to manage Python subprocesses, obtain audio/video tracks, and create mediasoup-client handlers. The tool supports features like getUserMedia, handlerFactory creation, and event handling for subprocess closure and unexpected termination. It provides custom classes for media stream and track constraints, enabling diverse audio/video sources like devices, files, or URLs. The tool enhances WebRTC capabilities in Node.js applications through seamless Python subprocess communication.
LLM-Tuning
LLM-Tuning is a collection of tools and resources for fine-tuning large language models (LLMs). It includes a library of pre-trained LoRA models, a set of tutorials and examples, and a community forum for discussion and support. LLM-Tuning makes it easy to fine-tune LLMs for a variety of tasks, including text classification, question answering, and dialogue generation. With LLM-Tuning, you can quickly and easily improve the performance of your LLMs on downstream tasks.
ai00_server
AI00 RWKV Server is an inference API server for the RWKV language model based upon the web-rwkv inference engine. It supports VULKAN parallel and concurrent batched inference and can run on all GPUs that support VULKAN. No need for Nvidia cards!!! AMD cards and even integrated graphics can be accelerated!!! No need for bulky pytorch, CUDA and other runtime environments, it's compact and ready to use out of the box! Compatible with OpenAI's ChatGPT API interface. 100% open source and commercially usable, under the MIT license. If you are looking for a fast, efficient, and easy-to-use LLM API server, then AI00 RWKV Server is your best choice. It can be used for various tasks, including chatbots, text generation, translation, and Q&A.
llm.nvim
llm.nvim is a universal plugin for a large language model (LLM) designed to enable users to interact with LLM within neovim. Users can customize various LLMs such as gpt, glm, kimi, and local LLM. The plugin provides tools for optimizing code, comparing code, translating text, and more. It also supports integration with free models from Cloudflare, Github models, siliconflow, and others. Users can customize tools, chat with LLM, quickly translate text, and explain code snippets. The plugin offers a flexible window interface for easy interaction and customization.
python-tgpt
Python-tgpt is a Python package that enables seamless interaction with over 45 free LLM providers without requiring an API key. It also provides image generation capabilities. The name _python-tgpt_ draws inspiration from its parent project tgpt, which operates on Golang. Through this Python adaptation, users can effortlessly engage with a number of free LLMs available, fostering a smoother AI interaction experience.
vision-parse
Vision Parse is a tool that leverages Vision Language Models to parse PDF documents into beautifully formatted markdown content. It offers smart content extraction, content formatting, multi-LLM support, PDF document support, and local model hosting using Ollama. Users can easily convert PDFs to markdown with high precision and preserve document hierarchy and styling. The tool supports multiple Vision LLM providers like OpenAI, LLama, and Gemini for accuracy and speed, making document processing efficient and effortless.
instructor
Instructor is a Python library that makes it a breeze to work with structured outputs from large language models (LLMs). Built on top of Pydantic, it provides a simple, transparent, and user-friendly API to manage validation, retries, and streaming responses. Get ready to supercharge your LLM workflows!
receipt-scanner
The receipt-scanner repository is an AI-Powered Receipt and Invoice Scanner for Laravel that allows users to easily extract structured receipt data from images, PDFs, and emails within their Laravel application using OpenAI. It provides a light wrapper around OpenAI Chat and Completion endpoints, supports various input formats, and integrates with Textract for OCR functionality. Users can install the package via composer, publish configuration files, and use it to extract data from plain text, PDFs, images, Word documents, and web content. The scanned receipt data is parsed into a DTO structure with main classes like Receipt, Merchant, and LineItem.
candle-vllm
Candle-vllm is an efficient and easy-to-use platform designed for inference and serving local LLMs, featuring an OpenAI compatible API server. It offers a highly extensible trait-based system for rapid implementation of new module pipelines, streaming support in generation, efficient management of key-value cache with PagedAttention, and continuous batching. The tool supports chat serving for various models and provides a seamless experience for users to interact with LLMs through different interfaces.
python-genai
The Google Gen AI SDK is a Python library that provides access to Google AI and Vertex AI services. It allows users to create clients for different services, work with parameter types, models, generate content, call functions, handle JSON response schemas, stream text and image content, perform async operations, count and compute tokens, embed content, generate and upscale images, edit images, work with files, create and get cached content, tune models, distill models, perform batch predictions, and more. The SDK supports various features like automatic function support, manual function declaration, JSON response schema support, streaming for text and image content, async methods, tuning job APIs, distillation, batch prediction, and more.
dashscope-sdk
DashScope SDK for .NET is an unofficial SDK maintained by Cnblogs, providing various APIs for text embedding, generation, multimodal generation, image synthesis, and more. Users can interact with the SDK to perform tasks such as text completion, chat generation, function calls, file operations, and more. The project is under active development, and users are advised to check the Release Notes before upgrading.
llm-scraper
LLM Scraper is a TypeScript library that allows you to convert any webpages into structured data using LLMs. It supports Local (GGUF), OpenAI, Groq chat models, and schemas defined with Zod. With full type-safety in TypeScript and based on the Playwright framework, it offers streaming when crawling multiple pages and supports four input modes: html, markdown, text, and image.
modelfusion
ModelFusion is an abstraction layer for integrating AI models into JavaScript and TypeScript applications, unifying the API for common operations such as text streaming, object generation, and tool usage. It provides features to support production environments, including observability hooks, logging, and automatic retries. You can use ModelFusion to build AI applications, chatbots, and agents. ModelFusion is a non-commercial open source project that is community-driven. You can use it with any supported provider. ModelFusion supports a wide range of models including text generation, image generation, vision, text-to-speech, speech-to-text, and embedding models. ModelFusion infers TypeScript types wherever possible and validates model responses. ModelFusion provides an observer framework and logging support. ModelFusion ensures seamless operation through automatic retries, throttling, and error handling mechanisms. ModelFusion is fully tree-shakeable, can be used in serverless environments, and only uses a minimal set of dependencies.
client-js
The Mistral JavaScript client is a library that allows you to interact with the Mistral AI API. With this client, you can perform various tasks such as listing models, chatting with streaming, chatting without streaming, and generating embeddings. To use the client, you can install it in your project using npm and then set up the client with your API key. Once the client is set up, you can use it to perform the desired tasks. For example, you can use the client to chat with a model by providing a list of messages. The client will then return the response from the model. You can also use the client to generate embeddings for a given input. The embeddings can then be used for various downstream tasks such as clustering or classification.
For similar tasks
tafrigh
Tafrigh is a tool for transcribing visual and audio content into text using advanced artificial intelligence techniques provided by OpenAI and wit.ai. It allows direct downloading of content from platforms like YouTube, Facebook, Twitter, and SoundCloud, and provides various output formats such as txt, srt, vtt, csv, tsv, and json. Users can install Tafrigh via pip or by cloning the GitHub repository and using Poetry. The tool supports features like skipping transcription if output exists, specifying playlist items, setting download retries, using different Whisper models, and utilizing wit.ai for transcription. Tafrigh can be used via command line or programmatically, and Docker images are available for easy usage.
XLICON-V2-MD
XLICON-V2-MD is a versatile Multi-Device WhatsApp bot developed by Salman Ahamed. It offers a wide range of features, making it an advanced and user-friendly bot for various purposes. The bot supports multi-device operation, AI photo enhancement, downloader commands, hidden NSFW commands, logo generation, anime exploration, economic activities, games, and audio/video editing. Users can deploy the bot on platforms like Heroku, Replit, Codespace, Okteto, Railway, Mongenius, Coolify, and Render. The bot is maintained by Salman Ahamed and Abraham Dwamena, with contributions from various developers and testers. Misusing the bot may result in a ban from WhatsApp, so users are advised to use it at their own risk.
Aidoku
Aidoku is a free and open source manga reading application for iOS and iPadOS. It offers features like ad-free experience, robust WASM source system, online reading through external sources, iCloud sync support, downloads, and tracker support. Users can access the latest ipa from the releases page and join TestFlight via the Aidoku Discord for detailed installation instructions. The project is open to contributions, with planned features and fixes. Translation efforts are welcomed through Weblate for crowd-sourced translations.
Topu-ai
TOPU Md is a simple WhatsApp user bot created by Topu Tech. It offers various features such as multi-device support, AI photo enhancement, downloader commands, hidden NSFW commands, logo commands, anime commands, economy menu, various games, and audio/video editor commands. Users can fork the repo, get a session ID by pairing code, and deploy on Heroku. The bot requires Node version 18.x or higher for optimal performance. Contributions to TOPU-MD are welcome, and the tool is safe for use on WhatsApp and Heroku. The tool is licensed under the MIT License and is designed to enhance the WhatsApp experience with diverse features.
aiograpi
aiograpi is an asynchronous Instagram API wrapper for Python that allows users to interact with various Instagram functionalities such as retrieving public data of users, posts, stories, followers, and following users, managing proxy servers and challenge resolver, login by different methods, managing messages and threads, downloading and uploading various types of content, working with insights, likes, comments, and more. It is designed for testing or research purposes rather than production business use.
subtitler
Subtitles by fframes is a free, local, on-device AI video transcription tool with a user-friendly GUI. It allows users to transcribe video content, edit transcribed cues, style the subtitles, and render them directly onto the video. The tool provides a convenient way to create accurate subtitles for videos without the need for an internet connection.
Webscout
WebScout is a versatile tool that allows users to search for anything using Google, DuckDuckGo, and phind.com. It contains AI models, can transcribe YouTube videos, generate temporary email and phone numbers, has TTS support, webai (terminal GPT and open interpreter), and offline LLMs. It also supports features like weather forecasting, YT video downloading, temp mail and number generation, text-to-speech, advanced web searches, and more.
AI-Youtube-Shorts-Generator
AI Youtube Shorts Generator is a Python tool that utilizes GPT-4 and Whisper to generate engaging YouTube shorts from long-form videos. It downloads videos, transcribes them, extracts highlights, detects speakers, and crops content vertically for shorts. The tool requires Python 3.7 or higher, FFmpeg, and OpenCV. Users can contribute to the project under the MIT License.
For similar jobs
sweep
Sweep is an AI junior developer that turns bugs and feature requests into code changes. It automatically handles developer experience improvements like adding type hints and improving test coverage.
teams-ai
The Teams AI Library is a software development kit (SDK) that helps developers create bots that can interact with Teams and Microsoft 365 applications. It is built on top of the Bot Framework SDK and simplifies the process of developing bots that interact with Teams' artificial intelligence capabilities. The SDK is available for JavaScript/TypeScript, .NET, and Python.
ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.
classifai
Supercharge WordPress Content Workflows and Engagement with Artificial Intelligence. Tap into leading cloud-based services like OpenAI, Microsoft Azure AI, Google Gemini and IBM Watson to augment your WordPress-powered websites. Publish content faster while improving SEO performance and increasing audience engagement. ClassifAI integrates Artificial Intelligence and Machine Learning technologies to lighten your workload and eliminate tedious tasks, giving you more time to create original content that matters.
chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.
BricksLLM
BricksLLM is a cloud native AI gateway written in Go. Currently, it provides native support for OpenAI, Anthropic, Azure OpenAI and vLLM. BricksLLM aims to provide enterprise level infrastructure that can power any LLM production use cases. Here are some use cases for BricksLLM: * Set LLM usage limits for users on different pricing tiers * Track LLM usage on a per user and per organization basis * Block or redact requests containing PIIs * Improve LLM reliability with failovers, retries and caching * Distribute API keys with rate limits and cost limits for internal development/production use cases * Distribute API keys with rate limits and cost limits for students
uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.
griptape
Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. Griptape's core components include Structures (Agents, Pipelines, and Workflows), Tasks, Tools, Memory (Conversation Memory, Task Memory, and Meta Memory), Drivers (Prompt and Embedding Drivers, Vector Store Drivers, Image Generation Drivers, Image Query Drivers, SQL Drivers, Web Scraper Drivers, and Conversation Memory Drivers), Engines (Query Engines, Extraction Engines, Summary Engines, Image Generation Engines, and Image Query Engines), and additional components (Rulesets, Loaders, Artifacts, Chunkers, and Tokenizers). Griptape enables developers to create AI-powered applications with ease and efficiency.