chrome-ai

chrome-ai

Vercel AI provider for Chrome built-in model (Gemini Nano)

Stars: 245

Visit
 screenshot

Chrome AI is a Vercel AI provider for Chrome's built-in model (Gemini Nano). It allows users to create language models using Chrome's AI capabilities. The tool is under development and may contain errors and frequent changes. Users can install the ChromeAI provider module and use it to generate text, stream text, and generate objects. To enable AI in Chrome, users need to have Chrome version 127 or greater and turn on specific flags. The tool is designed for developers and researchers interested in experimenting with Chrome's built-in AI features.

README:

chrome-ai

Chrome AI

Vercel AI provider for Chrome built-in model (Gemini Nano).

NPM version NPM downloads Stargazers MIT License

CI status codecov Follow Twitter

Report Bug · Pull Request

⚠️ Note:

  • This module is under development and may contain errors and frequent incompatible changes.
  • Chrome's implementation of built-in AI with Gemini Nano is an experiment and will change as they test and address feedback.
  • If you've never heard of it before, follow these steps to turn on Chrome's built-in AI.

📦 Installation

The ChromeAI provider is available in the chrome-ai module. You can install it with:

npm install chrome-ai

🦄 Language Models

The chromeai provider instance is a function that you can invoke to create a language model:

import { chromeai } from 'chrome-ai';

const model = chromeai();

It automatically selects the correct model id. You can also pass additional settings in the second argument:

import { chromeai } from 'chrome-ai';

const model = chromeai('text', {
  // additional settings
  temperature: 0.5,
  topK: 5,
});

You can use the following optional settings to customize:

  • modelId 'text' (default: 'text'`)
  • temperature number (default: 0.8)
  • topK number (default: 3)

⭐️ Embedding models

import { chromeai } from 'chrome-ai';
import { embedMany, cosineSimilarity } from 'ai';

const { embeddings } = await embedMany({
  model: chromeai('embedding'),
  values: ['sunny day at the beach', 'rainy afternoon in the city'],
});
// [[1.9545, 0.0318...], [1.8015, 0.1504...]]

const similarity = cosineSimilarity(embeddings[0], embeddings[1]);
// similarity: 0.9474937159037822

🎯 Examples

You can use Chrome built-in language models to generate text with the generateText or streamText function:

import { generateText } from 'ai';
import { chromeai } from 'chrome-ai';

const { text } = await generateText({
  model: chromeai(),
  prompt: 'Who are you?',
});

console.log(text); //  I am a large language model, trained by Google.
import { streamText } from 'ai';
import { chromeai } from 'chrome-ai';

const { textStream } = await streamText({
  model: chromeai(),
  prompt: 'Who are you?',
});

let result = '';
for await (const textPart of textStream) {
  result += textPart;
}

console.log(result);
//  I am a large language model, trained by Google.

Chrome built-in language models can also be used in the generateObject/streamObject function:

import { generateObject } from 'ai';
import { chromeai } from 'chrome-ai';
import { z } from 'zod';

const { object } = await generateObject({
  model: chromeai(),
  schema: z.object({
    recipe: z.object({
      name: z.string(),
      ingredients: z.array(
        z.object({
          name: z.string(),
          amount: z.string(),
        })
      ),
      steps: z.array(z.string()),
    }),
  }),
  prompt: 'Generate a lasagna recipe.',
});

console.log(object);
// { recipe: {...} }
import { streamObject } from 'ai';
import { chromeai } from 'chrome-ai';
import { z } from 'zod';

const { partialObjectStream } = await streamObject({
  model: chromeai(),
  schema: z.object({
    recipe: z.object({
      name: z.string(),
      ingredients: z.array(
        z.object({
          name: z.string(),
          amount: z.string(),
        })
      ),
      steps: z.array(z.string()),
    }),
  }),
  prompt: 'Generate a lasagna recipe.',
});

for await (const partialObject of result.partialObjectStream) {
  console.log(JSON.stringify(partialObject, null, 2));
  // { recipe: {...} }
}

Due to model reasons, toolCall/functionCall are not supported. We are making an effort to implement these functions by prompt engineering.

Enabling AI in Chrome

Chrome built-in AI is a preview feature, you need to use chrome version 127 or greater, now in dev or canary channel, may release on stable chanel at Jul 17, 2024.

After then, you should turn on these flags:

  • chrome://flags/#prompt-api-for-gemini-nano: Enabled
  • chrome://flags/#optimization-guide-on-device-model: Enabled BypassPrefRequirement
  • chrome://components/: Click Optimization Guide On Device Model to download the model.

Or you can try using the experimental feature: chrome-ai/polyfill, to use chrome-ai in any browser that supports WebGPU and WebAssembly.

import 'chrome-ai/polyfill';
// or
require('chrome-ai/polyfill');

Star History

Star History Chart

License

MIT License © 2024 Jeason

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for chrome-ai

Similar Open Source Tools

For similar tasks

For similar jobs