tunix

tunix

A JAX-native LLM Post-Training Library

Stars: 148

Visit
 screenshot

Tunix is a JAX-based library designed for post-training Large Language Models. It provides efficient support for supervised fine-tuning, reinforcement learning, and knowledge distillation. Tunix leverages JAX for accelerated computation and integrates seamlessly with the Flax NNX modeling framework. The library is modular, efficient, and designed for distributed training on accelerators like TPUs. Currently in early development, Tunix aims to expand its capabilities, usability, and performance.

README:

Tunix: A JAX-native LLM Post-Training Library

Tunix(Tune-in-JAX) is a JAX based library designed to streamline the post-training of Large Language Models. It provides efficient and scalable supports for:

  • Supervised Fine-Tuning
  • Reinforcement Learning (RL)
  • Knowledge Distillation

Tunix leverages the power of JAX for accelerated computation and seamless integration with JAX-based modeling framework Flax NNX.

Current Status: Early Development

Tunix is in early development. We're actively working to expand its capabilities, usability and improve its performance. Stay tuned for upcoming updates and new features!

Key Features & Highlights

Tunix is still under development, here's a glimpse of the current features:

  • Supervised Fine-Tuning:
    • Full Weights Fine-Tuning
    • Parameter-Efficient Fine-Tuning (PEFT) with LoRA/Q-LoRA Layers
  • Reinforcement Learning (RL):
    • Proximal Policy Optimization (PPO)
    • Group Relative Policy Optimization (GRPO)
    • Token-level Group Sequence Policy Optimization (GSPO-token)
  • Preference Fine-Tuning:
    • Preference alignments with Direct Preference Optimization (DPO)
  • Knowledge Distillation:
    • Logit Strategy: A classic approach where the student learns to match the teacher's output probability distribution.
    • Attention Transfer & Projection Strategies: Methods to align the attention mechanisms between the student and teacher models.
    • Feature Pooling & Projection Strategies: General techniques for matching intermediate feature representations, even between models of different architectures.
  • Modularity:
    • Components are designed to be reusable and composable
    • Easy to customize and extend
  • Efficiency:
    • Native support of common model sharding strategies such as DP, FSDP and TP
    • Designed for distributed training on accelerators (TPU)

Upcoming

  • Agentic RL Training:
    • Async Rollout
    • Multi-turn & multi-step support
    • Tool usage
  • Advanced Algorithms:
    • Addtional state-of-the-art RL and distillation algorithms
  • Scalability:
    • Multi-host distributed training
    • Optimized rollout with vLLM
  • User Guides:
    • More advanced RL recipe

Installation

Tunix doesn't have a PyPI package yet. To use Tunix, you need to install from GitHub directly.

pip install git+https://github.com/google/tunix

Getting Started

To get started, we have a bunch of detailed examples and tutorials.

To setup Jupyter notebook on single host GCP TPU VM, please refer to the setup script.

We plan to provide clear, concise documentation and more examples in the near future.

Contributing and Feedbacks

We welcome contributions! As Tunix is in early development, the contribution process is still being formalized. A rough draft of the contribution process is present here. In the meantime, you can make feature requests, report issues and ask questions in our Tunix GitHub discussion forum.

Collaborations and Partnership

GRL (Game Reinforcement Learning), developed by Hao AI Lab from UCSD, is an open-source framework for post-training large language models through multi-turn RL on challenging games. In collaboration with Tunix, GRL integrates seamless TPU support—letting users quickly run scalable, reproducible RL experiments (like PPO rollouts on Qwen2.5-0.5B-Instruct) on TPU v4 meshes with minimal setup. This partnership empowers the community to push LLM capabilities further, combining Tunix’s optimized TPU runtime with GRL’s flexible game RL pipeline for cutting-edge research and easy reproducibility.

Stay Tuned!

Thank you for your interest in Tunix. We're working hard to bring you a powerful and efficient library for LLM post-training. Please follow our progress and check back for updates!

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for tunix

Similar Open Source Tools

For similar tasks

For similar jobs