mindsdb
The platform for building AI from enterprise data
Stars: 26593
MindsDB is a platform for customizing AI from enterprise data. You can create, serve, and fine-tune models in real-time from your database, vector store, and application data. MindsDB "enhances" SQL syntax with AI capabilities to make it accessible for developers worldwide. With MindsDB’s nearly 200 integrations, any developer can create AI customized for their purpose, faster and more securely. Their AI systems will constantly improve themselves — using companies’ own data, in real-time.
README:
MindsDB is the platform for building AI from enterprise data. You can create, serve, and fine-tune models in real-time from your database, vector store, and application data.
MindsDB is the platform for building AI from enterprise data.
With MindsDB, you can deploy, serve, and fine-tune models in real-time, utilizing data from databases, vector stores, or applications, to build AI-powered apps - using universal tools developers already know.
MindsDB integrates with numerous data sources, including databases, vector stores, and applications, and popular AI/ML frameworks, including AutoML and LLMs. MindsDB connects data sources with AI/ML frameworks and automates routine workflows between them. By doing so, we bring data and AI together, enabling the intuitive implementation of customized AI systems.
Learn more about features and use cases of MindsDB here.
To get started, install MindsDB locally via Docker or Docker Desktop, following the instructions in linked doc pages.
MindsDB enhances SQL syntax to enable seamless development and deployment of AI-powered applications. Furthermore, users can interact with MindsDB not only via SQL API but also via REST APIs, Python SDK, JavaScript SDK, and MongoDB-QL.
🎯 Solutions | ⚙️ SQL Query Examples |
---|---|
🤖 Fine-Tuning | FINETUNE mindsdb.hf_model FROM postgresql.table; |
📚 Knowledge Base | CREATE KNOWLEDGE_BASE my_knowledge FROM (SELECT contents FROM drive.files); |
🔍 Semantic Search | SELECT * FROM rag_model WHERE question='What product is best for treating a cold?'; |
⏱️ Real-Time Forecasting | SELECT * FROM binance.trade_data WHERE symbol = 'BTCUSDT'; |
🕵️ Agents | CREATE AGENT my_agent USING model='chatbot_agent', skills = ['knowledge_base']; |
💬 Chatbots | CREATE CHATBOT slack_bot USING database='slack',agent='customer_support'; |
⏲️ Time Driven Automation | CREATE JOB twitter_bot ( <sql_query1>, <sql_query2> ) START '2023-04-01 00:00:00'; |
🔔 Event Driven Automation | CREATE TRIGGER data_updated ON mysql.customers_data (sql_code) |
MindsDB enables you to deploy AI/ML models, send predictions to your application, and automate AI workflows.
Discover more tutorials and use cases here.
This category of use cases involves tasks that get data from a data source, pass it through an AI/ML model, and write the output to a data destination.
Common use cases are anomaly detection, data indexing/labeling/cleaning, and data transformation.
This example showcases the data enrichment flow, where input data comes from a PostgreSQL database and is passed through an OpenAI model to generate new content which is saved into a data destination.
We take customer reviews from a PostgreSQL database. Then, we deploy an OpenAI model that analyzes all customer reviews and assigns sentiment values. Finally, to automate the workflow for incoming customer reviews, we create a job that generates and saves AI output into a data destination.
-- Step 1. Connect a data source to MindsDB
CREATE DATABASE data_source
WITH ENGINE = "postgres",
PARAMETERS = {
"user": "demo_user",
"password": "demo_password",
"host": "samples.mindsdb.com",
"port": "5432",
"database": "demo",
"schema": "demo_data"
};
SELECT *
FROM data_source.amazon_reviews_job;
-- Step 2. Deploy an AI model
CREATE ML_ENGINE openai_engine
FROM openai
USING
openai_api_key = 'your-openai-api-key';
CREATE MODEL sentiment_classifier
PREDICT sentiment
USING
engine = 'openai_engine',
model_name = 'gpt-4',
prompt_template = 'describe the sentiment of the reviews
strictly as "positive", "neutral", or "negative".
"I love the product":positive
"It is a scam":negative
"{{review}}.":';
DESCRIBE sentiment_classifier;
-- Step 3. Join input data with AI model to get AI output
SELECT input.review, output.sentiment
FROM data_source.amazon_reviews_job AS input
JOIN sentiment_classifier AS output;
-- Step 4. Automate this workflow to accomodate real-time and dynamic data
CREATE DATABASE data_destination
WITH ENGINE = "engine-name", -- choose the data source you want to connect to save AI output
PARAMETERS = { -- list of available data sources: https://docs.mindsdb.com/integrations/data-overview
"key": "value",
...
};
CREATE JOB ai_automation_flow (
INSERT INTO data_destination.ai_output (
SELECT input.created_at,
input.product_name,
input.review,
output.sentiment
FROM data_source.amazon_reviews_job AS input
JOIN sentiment_classifier AS output
WHERE input.created_at > LAST
);
);
This category of use cases involves creating AI systems composed of multiple connected parts, including various AI/ML models and data sources, and exposing such AI systems via APIs.
Common use cases are agents and assistants, recommender systems, forecasting systems, and semantic search.
This example showcases AI agents, a feature developed by MindsDB. AI agents can be assigned certain skills, including text-to-SQL skills and knowledge bases. Skills provide an AI agent with input data that can be in the form of a database, a file, or a website.
We create a text-to-SQL skill based on the car sales dataset and deploy a conversational model, which are both components of an agent. Then, we create an agent and assign this skill and this model to it. This agent can be queried to ask questions about data stored in assigned skills.
-- Step 1. Connect a data source to MindsDB
CREATE DATABASE data_source
WITH ENGINE = "postgres",
PARAMETERS = {
"user": "demo_user",
"password": "demo_password",
"host": "samples.mindsdb.com",
"port": "5432",
"database": "demo",
"schema": "demo_data"
};
SELECT *
FROM data_source.car_sales;
-- Step 2. Create a skill
CREATE SKILL my_skill
USING
type = 'text2sql',
database = 'data_source',
tables = ['car_sales'],
description = 'car sales data of different car types';
SHOW SKILLS;
-- Step 3. Deploy a conversational model
CREATE ML_ENGINE langchain_engine
FROM langchain
USING
openai_api_key = 'your openai-api-key';
CREATE MODEL my_conv_model
PREDICT answer
USING
engine = 'langchain_engine',
model_name = 'gpt-4',
mode = 'conversational',
user_column = 'question' ,
assistant_column = 'answer',
max_tokens = 100,
temperature = 0,
verbose = True,
prompt_template = 'Answer the user input in a helpful way';
DESCRIBE my_conv_model;
-- Step 4. Create an agent
CREATE AGENT my_agent
USING
model = 'my_conv_model',
skills = ['my_skill'];
SHOW AGENTS;
-- Step 5. Query an agent
SELECT *
FROM my_agent
WHERE question = 'what is the average price of cars from 2018?';
SELECT *
FROM my_agent
WHERE question = 'what is the max mileage of cars from 2017?';
SELECT *
FROM my_agent
WHERE question = 'what percentage of sold cars (from 2016) are automatic/semi-automatic/manual cars?';
SELECT *
FROM my_agent
WHERE question = 'is petrol or diesel more common for cars from 2019?';
SELECT *
FROM my_agent
WHERE question = 'what is the most commonly sold model?';
Agents are accessible via API endpoints.
If you’d like to contribute to MindsDB, install MindsDB for development following this instruction.
You’ll find the contribution guide here.
We are always open to suggestions, so feel free to open new issues with your ideas, and we can guide you!
This project is released with a Contributor Code of Conduct. By participating in this project, you agree to follow its terms.
Also, check out the rewards and community programs here.
If you find a bug, please submit an issue on GitHub here.
Here is how you can get community support:
- Post a question at MindsDB Slack Community.
- Ask for help at our GitHub Discussions.
- Ask a question at Stackoverflow with a MindsDB tag.
If you need commercial support, please contact the MindsDB team.
Made with contributors-img.
Join our Slack community and subscribe to the monthly Developer Newsletter to get product updates, information about MindsDB events and contests, and useful content, like tutorials.
For detailed licensing information, please refer to the LICENSE file.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for mindsdb
Similar Open Source Tools
mindsdb
MindsDB is a platform for customizing AI from enterprise data. You can create, serve, and fine-tune models in real-time from your database, vector store, and application data. MindsDB "enhances" SQL syntax with AI capabilities to make it accessible for developers worldwide. With MindsDB’s nearly 200 integrations, any developer can create AI customized for their purpose, faster and more securely. Their AI systems will constantly improve themselves — using companies’ own data, in real-time.
LazyLLM
LazyLLM is a low-code development tool for building complex AI applications with multiple agents. It assists developers in building AI applications at a low cost and continuously optimizing their performance. The tool provides a convenient workflow for application development and offers standard processes and tools for various stages of application development. Users can quickly prototype applications with LazyLLM, analyze bad cases with scenario task data, and iteratively optimize key components to enhance the overall application performance. LazyLLM aims to simplify the AI application development process and provide flexibility for both beginners and experts to create high-quality applications.
zep
Zep is a long-term memory service for AI Assistant apps. With Zep, you can provide AI assistants with the ability to recall past conversations, no matter how distant, while also reducing hallucinations, latency, and cost. Zep persists and recalls chat histories, and automatically generates summaries and other artifacts from these chat histories. It also embeds messages and summaries, enabling you to search Zep for relevant context from past conversations. Zep does all of this asyncronously, ensuring these operations don't impact your user's chat experience. Data is persisted to database, allowing you to scale out when growth demands. Zep also provides a simple, easy to use abstraction for document vector search called Document Collections. This is designed to complement Zep's core memory features, but is not designed to be a general purpose vector database. Zep allows you to be more intentional about constructing your prompt: 1. automatically adding a few recent messages, with the number customized for your app; 2. a summary of recent conversations prior to the messages above; 3. and/or contextually relevant summaries or messages surfaced from the entire chat session. 4. and/or relevant Business data from Zep Document Collections.
weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.
VMind
VMind is an open-source solution for intelligent visualization, providing an intelligent chart component based on LLM by VisActor. It allows users to create chart narrative works with natural language interaction, edit charts through dialogue, and export narratives as videos or GIFs. The tool is easy to use, scalable, supports various chart types, and offers one-click export functionality. Users can customize chart styles, specify themes, and aggregate data using LLM models. VMind aims to enhance efficiency in creating data visualization works through dialogue-based editing and natural language interaction.
superpipe
Superpipe is a lightweight framework designed for building, evaluating, and optimizing data transformation and data extraction pipelines using LLMs. It allows users to easily combine their favorite LLM libraries with Superpipe's building blocks to create pipelines tailored to their unique data and use cases. The tool facilitates rapid prototyping, evaluation, and optimization of end-to-end pipelines for tasks such as classification and evaluation of job departments based on work history. Superpipe also provides functionalities for evaluating pipeline performance, optimizing parameters for cost, accuracy, and speed, and conducting grid searches to experiment with different models and prompts.
Trinity
Trinity is an Explainable AI (XAI) Analysis and Visualization tool designed for Deep Learning systems or other models performing complex classification or decoding. It provides performance analysis through interactive 3D projections that are hyper-dimensional aware, allowing users to explore hyperspace, hypersurface, projections, and manifolds. Trinity primarily works with JSON data formats and supports the visualization of FeatureVector objects. Users can analyze and visualize data points, correlate inputs with classification results, and create custom color maps for better data interpretation. Trinity has been successfully applied to various use cases including Deep Learning Object detection models, COVID gene/tissue classification, Brain Computer Interface decoders, and Large Language Model (ChatGPT) Embeddings Analysis.
agentlang
AgentLang is an open-source programming language and framework designed for solving complex tasks with the help of AI agents. It allows users to build business applications rapidly from high-level specifications, making it more efficient than traditional programming languages. The language is data-oriented and declarative, with a syntax that is intuitive and closer to natural languages. AgentLang introduces innovative concepts such as first-class AI agents, graph-based hierarchical data model, zero-trust programming, declarative dataflow, resolvers, interceptors, and entity-graph-database mapping.
AutoNode
AutoNode is a self-operating computer system designed to automate web interactions and data extraction processes. It leverages advanced technologies like OCR (Optical Character Recognition), YOLO (You Only Look Once) models for object detection, and a custom site-graph to navigate and interact with web pages programmatically. Users can define objectives, create site-graphs, and utilize AutoNode via API to automate tasks on websites. The tool also supports training custom YOLO models for object detection and OCR for text recognition on web pages. AutoNode can be used for tasks such as extracting product details, automating web interactions, and more.
instructor-js
Instructor is a Typescript library for structured extraction in Typescript, powered by llms, designed for simplicity, transparency, and control. It stands out for its simplicity, transparency, and user-centric design. Whether you're a seasoned developer or just starting out, you'll find Instructor's approach intuitive and steerable.
DemoGPT
DemoGPT is an all-in-one agent library that provides tools, prompts, frameworks, and LLM models for streamlined agent development. It leverages GPT-3.5-turbo to generate LangChain code, creating interactive Streamlit applications. The tool is designed for creating intelligent, interactive, and inclusive solutions in LLM-based application development. It offers model flexibility, iterative development, and a commitment to user engagement. Future enhancements include integrating Gorilla for autonomous API usage and adding a publicly available database for refining the generation process.
ControlFlow
ControlFlow is a Python framework designed for building agentic AI workflows. It provides a structured approach for defining tasks, assigning specialized AI agents, and orchestrating complex behaviors. By balancing AI autonomy with precise oversight, users can create sophisticated AI-powered applications with confidence. ControlFlow offers a task-centric architecture, structured results with type-safe outputs, specialized agents for efficient problem-solving, ecosystem integration with LangChain models, flexible control over workflows, multi-agent orchestration, and native observability and debugging capabilities.
neo4j-runway
Neo4j Runway is a Python library that simplifies the process of migrating relational data into a graph. It provides tools to abstract communication with OpenAI for data discovery, generate data models, ingestion code, and load data into a Neo4j instance. The library leverages OpenAI LLMs for insights, Instructor Python library for modeling, and PyIngest for data loading. Users can visualize data models using graphviz and benefit from a seamless integration with Neo4j for efficient data migration.
AI
AI is an open-source Swift framework for interfacing with generative AI. It provides functionalities for text completions, image-to-text vision, function calling, DALLE-3 image generation, audio transcription and generation, and text embeddings. The framework supports multiple AI models from providers like OpenAI, Anthropic, Mistral, Groq, and ElevenLabs. Users can easily integrate AI capabilities into their Swift projects using AI framework.
Bard-API
The Bard API is a Python package that returns responses from Google Bard through the value of a cookie. It is an unofficial API that operates through reverse-engineering, utilizing cookie values to interact with Google Bard for users struggling with frequent authentication problems or unable to authenticate via Google Authentication. The Bard API is not a free service, but rather a tool provided to assist developers with testing certain functionalities due to the delayed development and release of Google Bard's API. It has been designed with a lightweight structure that can easily adapt to the emergence of an official API. Therefore, using it for any other purposes is strongly discouraged. If you have access to a reliable official PaLM-2 API or Google Generative AI API, replace the provided response with the corresponding official code. Check out https://github.com/dsdanielpark/Bard-API/issues/262.
Tiger
Tiger is a community-driven project developing a reusable and integrated tool ecosystem for LLM Agent Revolution. It utilizes Upsonic for isolated tool storage, profiling, and automatic document generation. With Tiger, you can create a customized environment for your agents or leverage the robust and publicly maintained Tiger curated by the community itself.
For similar tasks
Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.
danswer
Danswer is an open-source Gen-AI Chat and Unified Search tool that connects to your company's docs, apps, and people. It provides a Chat interface and plugs into any LLM of your choice. Danswer can be deployed anywhere and for any scale - on a laptop, on-premise, or to cloud. Since you own the deployment, your user data and chats are fully in your own control. Danswer is MIT licensed and designed to be modular and easily extensible. The system also comes fully ready for production usage with user authentication, role management (admin/basic users), chat persistence, and a UI for configuring Personas (AI Assistants) and their Prompts. Danswer also serves as a Unified Search across all common workplace tools such as Slack, Google Drive, Confluence, etc. By combining LLMs and team specific knowledge, Danswer becomes a subject matter expert for the team. Imagine ChatGPT if it had access to your team's unique knowledge! It enables questions such as "A customer wants feature X, is this already supported?" or "Where's the pull request for feature Y?"
semantic-kernel
Semantic Kernel is an SDK that integrates Large Language Models (LLMs) like OpenAI, Azure OpenAI, and Hugging Face with conventional programming languages like C#, Python, and Java. Semantic Kernel achieves this by allowing you to define plugins that can be chained together in just a few lines of code. What makes Semantic Kernel _special_ , however, is its ability to _automatically_ orchestrate plugins with AI. With Semantic Kernel planners, you can ask an LLM to generate a plan that achieves a user's unique goal. Afterwards, Semantic Kernel will execute the plan for the user.
floneum
Floneum is a graph editor that makes it easy to develop your own AI workflows. It uses large language models (LLMs) to run AI models locally, without any external dependencies or even a GPU. This makes it easy to use LLMs with your own data, without worrying about privacy. Floneum also has a plugin system that allows you to improve the performance of LLMs and make them work better for your specific use case. Plugins can be used in any language that supports web assembly, and they can control the output of LLMs with a process similar to JSONformer or guidance.
mindsdb
MindsDB is a platform for customizing AI from enterprise data. You can create, serve, and fine-tune models in real-time from your database, vector store, and application data. MindsDB "enhances" SQL syntax with AI capabilities to make it accessible for developers worldwide. With MindsDB’s nearly 200 integrations, any developer can create AI customized for their purpose, faster and more securely. Their AI systems will constantly improve themselves — using companies’ own data, in real-time.
aiscript
AiScript is a lightweight scripting language that runs on JavaScript. It supports arrays, objects, and functions as first-class citizens, and is easy to write without the need for semicolons or commas. AiScript runs in a secure sandbox environment, preventing infinite loops from freezing the host. It also allows for easy provision of variables and functions from the host.
activepieces
Activepieces is an open source replacement for Zapier, designed to be extensible through a type-safe pieces framework written in Typescript. It features a user-friendly Workflow Builder with support for Branches, Loops, and Drag and Drop. Activepieces integrates with Google Sheets, OpenAI, Discord, and RSS, along with 80+ other integrations. The list of supported integrations continues to grow rapidly, thanks to valuable contributions from the community. Activepieces is an open ecosystem; all piece source code is available in the repository, and they are versioned and published directly to npmjs.com upon contributions. If you cannot find a specific piece on the pieces roadmap, please submit a request by visiting the following link: Request Piece Alternatively, if you are a developer, you can quickly build your own piece using our TypeScript framework. For guidance, please refer to the following guide: Contributor's Guide
superagent-js
Superagent is an open source framework that enables any developer to integrate production ready AI Assistants into any application in a matter of minutes.
For similar jobs
sweep
Sweep is an AI junior developer that turns bugs and feature requests into code changes. It automatically handles developer experience improvements like adding type hints and improving test coverage.
teams-ai
The Teams AI Library is a software development kit (SDK) that helps developers create bots that can interact with Teams and Microsoft 365 applications. It is built on top of the Bot Framework SDK and simplifies the process of developing bots that interact with Teams' artificial intelligence capabilities. The SDK is available for JavaScript/TypeScript, .NET, and Python.
ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.
classifai
Supercharge WordPress Content Workflows and Engagement with Artificial Intelligence. Tap into leading cloud-based services like OpenAI, Microsoft Azure AI, Google Gemini and IBM Watson to augment your WordPress-powered websites. Publish content faster while improving SEO performance and increasing audience engagement. ClassifAI integrates Artificial Intelligence and Machine Learning technologies to lighten your workload and eliminate tedious tasks, giving you more time to create original content that matters.
chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.
BricksLLM
BricksLLM is a cloud native AI gateway written in Go. Currently, it provides native support for OpenAI, Anthropic, Azure OpenAI and vLLM. BricksLLM aims to provide enterprise level infrastructure that can power any LLM production use cases. Here are some use cases for BricksLLM: * Set LLM usage limits for users on different pricing tiers * Track LLM usage on a per user and per organization basis * Block or redact requests containing PIIs * Improve LLM reliability with failovers, retries and caching * Distribute API keys with rate limits and cost limits for internal development/production use cases * Distribute API keys with rate limits and cost limits for students
uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.
griptape
Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. Griptape's core components include Structures (Agents, Pipelines, and Workflows), Tasks, Tools, Memory (Conversation Memory, Task Memory, and Meta Memory), Drivers (Prompt and Embedding Drivers, Vector Store Drivers, Image Generation Drivers, Image Query Drivers, SQL Drivers, Web Scraper Drivers, and Conversation Memory Drivers), Engines (Query Engines, Extraction Engines, Summary Engines, Image Generation Engines, and Image Query Engines), and additional components (Rulesets, Loaders, Artifacts, Chunkers, and Tokenizers). Griptape enables developers to create AI-powered applications with ease and efficiency.