
semantic-kernel
Integrate cutting-edge LLM technology quickly and easily into your apps
Stars: 23864

Semantic Kernel is an SDK that integrates Large Language Models (LLMs) like OpenAI, Azure OpenAI, and Hugging Face with conventional programming languages like C#, Python, and Java. Semantic Kernel achieves this by allowing you to define plugins that can be chained together in just a few lines of code. What makes Semantic Kernel _special_ , however, is its ability to _automatically_ orchestrate plugins with AI. With Semantic Kernel planners, you can ask an LLM to generate a plan that achieves a user's unique goal. Afterwards, Semantic Kernel will execute the plan for the user.
README:
Build intelligent AI agents and multi-agent systems with this enterprise-ready orchestration framework
Semantic Kernel is a model-agnostic SDK that empowers developers to build, orchestrate, and deploy AI agents and multi-agent systems. Whether you're building a simple chatbot or a complex multi-agent workflow, Semantic Kernel provides the tools you need with enterprise-grade reliability and flexibility.
- Python: 3.9+
- .NET: .NET 8.0+
- Java: JDK 17+
- OS Support: Windows, macOS, Linux
- Model Flexibility: Connect to any LLM with built-in support for OpenAI, Azure OpenAI, Hugging Face, NVidia and more
- Agent Framework: Build modular AI agents with access to tools/plugins, memory, and planning capabilities
- Multi-Agent Systems: Orchestrate complex workflows with collaborating specialist agents
- Plugin Ecosystem: Extend with native code functions, prompt templates, OpenAPI specs, or Model Context Protocol (MCP)
- Vector DB Support: Seamless integration with Azure AI Search, Elasticsearch, Chroma, and more
- Multimodal Support: Process text, vision, and audio inputs
- Local Deployment: Run with Ollama, LMStudio, or ONNX
- Process Framework: Model complex business processes with a structured workflow approach
- Enterprise Ready: Built for observability, security, and stable APIs
First, set the environment variable for your AI Services:
Azure OpenAI:
export AZURE_OPENAI_API_KEY=AAA....
or OpenAI directly:
export OPENAI_API_KEY=sk-...
pip install semantic-kernel
dotnet add package Microsoft.SemanticKernel
dotnet add package Microsoft.SemanticKernel.Agents.core
See semantic-kernel-java build for instructions.
Create a simple assistant that responds to user prompts:
import asyncio
from semantic_kernel.agents import ChatCompletionAgent
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
async def main():
# Initialize a chat agent with basic instructions
agent = ChatCompletionAgent(
service=AzureChatCompletion(),
name="SK-Assistant",
instructions="You are a helpful assistant.",
)
# Get a response to a user message
response = await agent.get_response(messages="Write a haiku about Semantic Kernel.")
print(response.content)
asyncio.run(main())
# Output:
# Language's essence,
# Semantic threads intertwine,
# Meaning's core revealed.
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Agents;
var builder = Kernel.CreateBuilder();
builder.AddAzureOpenAIChatCompletion(
Environment.GetEnvironmentVariable("AZURE_OPENAI_DEPLOYMENT"),
Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT"),
Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY")
);
var kernel = builder.Build();
ChatCompletionAgent agent =
new()
{
Name = "SK-Agent",
Instructions = "You are a helpful assistant.",
Kernel = kernel,
};
await foreach (AgentResponseItem<ChatMessageContent> response
in agent.InvokeAsync("Write a haiku about Semantic Kernel."))
{
Console.WriteLine(response.Message);
}
// Output:
// Language's essence,
// Semantic threads intertwine,
// Meaning's core revealed.
Enhance your agent with custom tools (plugins) and structured output:
from typing import Annotated
from pydantic import BaseModel
from semantic_kernel.agents import ChatCompletionAgent
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion, OpenAIChatPromptExecutionSettings
from semantic_kernel.functions import kernel_function, KernelArguments
class MenuPlugin:
@kernel_function(description="Provides a list of specials from the menu.")
def get_specials(self) -> Annotated[str, "Returns the specials from the menu."]:
return """
Special Soup: Clam Chowder
Special Salad: Cobb Salad
Special Drink: Chai Tea
"""
@kernel_function(description="Provides the price of the requested menu item.")
def get_item_price(
self, menu_item: Annotated[str, "The name of the menu item."]
) -> Annotated[str, "Returns the price of the menu item."]:
return "$9.99"
class MenuItem(BaseModel):
price: float
name: str
async def main():
# Configure structured output format
settings = OpenAIChatPromptExecutionSettings()
settings.response_format = MenuItem
# Create agent with plugin and settings
agent = ChatCompletionAgent(
service=AzureChatCompletion(),
name="SK-Assistant",
instructions="You are a helpful assistant.",
plugins=[MenuPlugin()],
arguments=KernelArguments(settings)
)
response = await agent.get_response(messages="What is the price of the soup special?")
print(response.content)
# Output:
# The price of the Clam Chowder, which is the soup special, is $9.99.
asyncio.run(main())
using System.ComponentModel;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Agents;
using Microsoft.SemanticKernel.ChatCompletion;
var builder = Kernel.CreateBuilder();
builder.AddAzureOpenAIChatCompletion(
Environment.GetEnvironmentVariable("AZURE_OPENAI_DEPLOYMENT"),
Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT"),
Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY")
);
var kernel = builder.Build();
kernel.Plugins.Add(KernelPluginFactory.CreateFromType<MenuPlugin>());
ChatCompletionAgent agent =
new()
{
Name = "SK-Assistant",
Instructions = "You are a helpful assistant.",
Kernel = kernel,
Arguments = new KernelArguments(new PromptExecutionSettings() { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto() })
};
await foreach (AgentResponseItem<ChatMessageContent> response
in agent.InvokeAsync("What is the price of the soup special?"))
{
Console.WriteLine(response.Message);
}
sealed class MenuPlugin
{
[KernelFunction, Description("Provides a list of specials from the menu.")]
public string GetSpecials() =>
"""
Special Soup: Clam Chowder
Special Salad: Cobb Salad
Special Drink: Chai Tea
""";
[KernelFunction, Description("Provides the price of the requested menu item.")]
public string GetItemPrice(
[Description("The name of the menu item.")]
string menuItem) =>
"$9.99";
}
Build a system of specialized agents that can collaborate:
import asyncio
from semantic_kernel.agents import ChatCompletionAgent
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion, OpenAIChatCompletion
billing_agent = ChatCompletionAgent(
service=AzureChatCompletion(),
name="BillingAgent",
instructions="You handle billing issues like charges, payment methods, cycles, fees, discrepancies, and payment failures."
)
refund_agent = ChatCompletionAgent(
service=AzureChatCompletion(),
name="RefundAgent",
instructions="Assist users with refund inquiries, including eligibility, policies, processing, and status updates.",
)
triage_agent = ChatCompletionAgent(
service=OpenAIChatCompletion(),
name="TriageAgent",
instructions="Evaluate user requests and forward them to BillingAgent or RefundAgent for targeted assistance."
" Provide the full answer to the user containing any information from the agents",
plugins=[billing_agent, refund_agent],
)
thread: None
async def main() -> None:
print("Welcome to the chat bot!\n Type 'exit' to exit.\n Try to get some billing or refund help.")
while True:
user_input = input("User:> ")
if user_input.lower().strip() == "exit":
print("\n\nExiting chat...")
return False
response = await triage_agent.get_response(
messages=user_input,
thread=thread,
)
if response:
print(f"Agent :> {response}")
# Agent :> I understand that you were charged twice for your subscription last month, and I'm here to assist you with resolving this issue. Here’s what we need to do next:
# 1. **Billing Inquiry**:
# - Please provide the email address or account number associated with your subscription, the date(s) of the charges, and the amount charged. This will allow the billing team to investigate the discrepancy in the charges.
# 2. **Refund Process**:
# - For the refund, please confirm your subscription type and the email address associated with your account.
# - Provide the dates and transaction IDs for the charges you believe were duplicated.
# Once we have these details, we will be able to:
# - Check your billing history for any discrepancies.
# - Confirm any duplicate charges.
# - Initiate a refund for the duplicate payment if it qualifies. The refund process usually takes 5-10 business days after approval.
# Please provide the necessary details so we can proceed with resolving this issue for you.
if __name__ == "__main__":
asyncio.run(main())
- 📖 Try our Getting Started Guide or learn about Building Agents
- 🔌 Explore over 100 Detailed Samples
- 💡 Learn about core Semantic Kernel Concepts
- Authentication Errors: Check that your API key environment variables are correctly set
- Model Availability: Verify your Azure OpenAI deployment or OpenAI model access
- Check our GitHub issues for known problems
- Search the Discord community for solutions
- Include your SDK version and full error messages when asking for help
We welcome your contributions and suggestions to the SK community! One of the easiest ways to participate is to engage in discussions in the GitHub repository. Bug reports and fixes are welcome!
For new features, components, or extensions, please open an issue and discuss with us before sending a PR. This is to avoid rejection as we might be taking the core in a different direction, but also to consider the impact on the larger ecosystem.
To learn more and get started:
-
Read the documentation
-
Learn how to contribute to the project
-
Ask questions in the GitHub discussions
-
Ask questions in the Discord community
-
Follow the team on our blog
This project has adopted the Microsoft Open Source Code of Conduct. For more information, see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.
Copyright (c) Microsoft Corporation. All rights reserved.
Licensed under the MIT license.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for semantic-kernel
Similar Open Source Tools

semantic-kernel
Semantic Kernel is an SDK that integrates Large Language Models (LLMs) like OpenAI, Azure OpenAI, and Hugging Face with conventional programming languages like C#, Python, and Java. Semantic Kernel achieves this by allowing you to define plugins that can be chained together in just a few lines of code. What makes Semantic Kernel _special_ , however, is its ability to _automatically_ orchestrate plugins with AI. With Semantic Kernel planners, you can ask an LLM to generate a plan that achieves a user's unique goal. Afterwards, Semantic Kernel will execute the plan for the user.

ExtractThinker
ExtractThinker is a library designed for extracting data from files and documents using Language Model Models (LLMs). It offers ORM-style interaction between files and LLMs, supporting multiple document loaders such as Tesseract OCR, Azure Form Recognizer, AWS TextExtract, and Google Document AI. Users can customize extraction using contract definitions, process documents asynchronously, handle various document formats efficiently, and split and process documents. The project is inspired by the LangChain ecosystem and focuses on Intelligent Document Processing (IDP) using LLMs to achieve high accuracy in document extraction tasks.

mobius
Mobius is an AI infra platform including realtime computing and training. It is built on Ray, a distributed computing framework, and provides a number of features that make it well-suited for online machine learning tasks. These features include: * **Cross Language**: Mobius can run in multiple languages (only Python and Java are supported currently) with high efficiency. You can implement your operator in different languages and run them in one job. * **Single Node Failover**: Mobius has a special failover mechanism that only needs to rollback the failed node itself, in most cases, to recover the job. This is a huge benefit if your job is sensitive about failure recovery time. * **AutoScaling**: Mobius can generate a new graph with different configurations in runtime without stopping the job. * **Fusion Training**: Mobius can combine TensorFlow/Pytorch and streaming, then building an e2e online machine learning pipeline. Mobius is still under development, but it has already been used to power a number of real-world applications, including: * A real-time recommendation system for a major e-commerce company * A fraud detection system for a large financial institution * A personalized news feed for a major news organization If you are interested in using Mobius for your own online machine learning projects, you can find more information in the documentation.

GraphRAG-SDK
Build fast and accurate GenAI applications with GraphRAG SDK, a specialized toolkit for building Graph Retrieval-Augmented Generation (GraphRAG) systems. It integrates knowledge graphs, ontology management, and state-of-the-art LLMs to deliver accurate, efficient, and customizable RAG workflows. The SDK simplifies the development process by automating ontology creation, knowledge graph agent creation, and query handling, enabling users to interact and query their knowledge graphs effectively. It supports multi-agent systems and orchestrates agents specialized in different domains. The SDK is optimized for FalkorDB, ensuring high performance and scalability for large-scale applications. By leveraging knowledge graphs, it enables semantic relationships and ontology-driven queries that go beyond standard vector similarity, enhancing retrieval-augmented generation capabilities.

Upsonic
Upsonic offers a cutting-edge enterprise-ready framework for orchestrating LLM calls, agents, and computer use to complete tasks cost-effectively. It provides reliable systems, scalability, and a task-oriented structure for real-world cases. Key features include production-ready scalability, task-centric design, MCP server support, tool-calling server, computer use integration, and easy addition of custom tools. The framework supports client-server architecture and allows seamless deployment on AWS, GCP, or locally using Docker.

continuous-eval
Open-Source Evaluation for LLM Applications. `continuous-eval` is an open-source package created for granular and holistic evaluation of GenAI application pipelines. It offers modularized evaluation, a comprehensive metric library covering various LLM use cases, the ability to leverage user feedback in evaluation, and synthetic dataset generation for testing pipelines. Users can define their own metrics by extending the Metric class. The tool allows running evaluation on a pipeline defined with modules and corresponding metrics. Additionally, it provides synthetic data generation capabilities to create user interaction data for evaluation or training purposes.

sophia
Sophia is an open-source TypeScript platform designed for autonomous AI agents and LLM based workflows. It aims to automate processes, review code, assist with refactorings, and support various integrations. The platform offers features like advanced autonomous agents, reasoning/planning inspired by Google's Self-Discover paper, memory and function call history, adaptive iterative planning, and more. Sophia supports multiple LLMs/services, CLI and web interface, human-in-the-loop interactions, flexible deployment options, observability with OpenTelemetry tracing, and specific agents for code editing, software engineering, and code review. It provides a flexible platform for the TypeScript community to expand and support various use cases and integrations.

crawl4ai
Crawl4AI is a powerful and free web crawling service that extracts valuable data from websites and provides LLM-friendly output formats. It supports crawling multiple URLs simultaneously, replaces media tags with ALT, and is completely free to use and open-source. Users can integrate Crawl4AI into Python projects as a library or run it as a standalone local server. The tool allows users to crawl and extract data from specified URLs using different providers and models, with options to include raw HTML content, force fresh crawls, and extract meaningful text blocks. Configuration settings can be adjusted in the `crawler/config.py` file to customize providers, API keys, chunk processing, and word thresholds. Contributions to Crawl4AI are welcome from the open-source community to enhance its value for AI enthusiasts and developers.

inferable
Inferable is an open source platform that helps users build reliable LLM-powered agentic automations at scale. It offers a managed agent runtime, durable tool calling, zero network configuration, multiple language support, and is fully open source under the MIT license. Users can define functions, register them with Inferable, and create runs that utilize these functions to automate tasks. The platform supports Node.js/TypeScript, Go, .NET, and React, and provides SDKs, core services, and bootstrap templates for various languages.

reolink_aio
The 'reolink_aio' Python package is designed to integrate Reolink devices (NVR/cameras) into your application. It implements Reolink IP NVR and camera API, allowing users to subscribe to Reolink ONVIF SWN events for real-time event notifications via webhook. The package provides functionalities to obtain and cache NVR or camera settings, capabilities, and states, as well as enable features like infrared lights, spotlight, and siren. Users can also subscribe to events, renew timers, and disconnect from the host device.

SemanticKernel.Assistants
This repository contains an assistant proposal for the Semantic Kernel, allowing the usage of assistants without relying on OpenAI Assistant APIs. It runs locally planners and plugins for the assistants, providing scenarios like Assistant with Semantic Kernel plugins, Multi-Assistant conversation, and AutoGen conversation. The Semantic Kernel is a lightweight SDK enabling integration of AI Large Language Models with conventional programming languages, offering functions like semantic functions, native functions, and embeddings-based memory. Users can bring their own model for the assistants and host them locally. The repository includes installation instructions, usage examples, and information on creating new conversation threads with the assistant.

lionagi
LionAGI is a powerful intelligent workflow automation framework that introduces advanced ML models into any existing workflows and data infrastructure. It can interact with almost any model, run interactions in parallel for most models, produce structured pydantic outputs with flexible usage, automate workflow via graph based agents, use advanced prompting techniques, and more. LionAGI aims to provide a centralized agent-managed framework for "ML-powered tools coordination" and to dramatically lower the barrier of entries for creating use-case/domain specific tools. It is designed to be asynchronous only and requires Python 3.10 or higher.

agents
The LiveKit Agent Framework is designed for building real-time, programmable participants that run on servers. Easily tap into LiveKit WebRTC sessions and process or generate audio, video, and data streams. The framework includes plugins for common workflows, such as voice activity detection and speech-to-text. Agents integrates seamlessly with LiveKit server, offloading job queuing and scheduling responsibilities to it. This eliminates the need for additional queuing infrastructure. Agent code developed on your local machine can scale to support thousands of concurrent sessions when deployed to a server in production.

typedai
TypedAI is a TypeScript-first AI platform designed for developers to create and run autonomous AI agents, LLM based workflows, and chatbots. It offers advanced autonomous agents, software developer agents, pull request code review agent, AI chat interface, Slack chatbot, and supports various LLM services. The platform features configurable Human-in-the-loop settings, functional callable tools/integrations, CLI and Web UI interface, and can be run locally or deployed on the cloud with multi-user/SSO support. It leverages the Python AI ecosystem through executing Python scripts/packages and provides flexible run/deploy options like single user mode, Firestore & Cloud Run deployment, and multi-user SSO enterprise deployment. TypedAI also includes UI examples, code examples, and automated LLM function schemas for seamless development and execution of AI workflows.

gollm
gollm is a Go package designed to simplify interactions with Large Language Models (LLMs) for AI engineers and developers. It offers a unified API for multiple LLM providers, easy provider and model switching, flexible configuration options, advanced prompt engineering, prompt optimization, memory retention, structured output and validation, provider comparison tools, high-level AI functions, robust error handling and retries, and extensible architecture. The package enables users to create AI-powered golems for tasks like content creation workflows, complex reasoning tasks, structured data generation, model performance analysis, prompt optimization, and creating a mixture of agents.

jido
Jido is a toolkit for building autonomous, distributed agent systems in Elixir. It provides the foundation for creating smart, composable workflows that can evolve and respond to their environment. Geared towards Agent builders, it contains core state primitives, composable actions, agent data structures, real-time sensors, signal system, skills, and testing tools. Jido is designed for multi-node Elixir clusters and offers rich helpers for unit and property-based testing.
For similar tasks

Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.

danswer
Danswer is an open-source Gen-AI Chat and Unified Search tool that connects to your company's docs, apps, and people. It provides a Chat interface and plugs into any LLM of your choice. Danswer can be deployed anywhere and for any scale - on a laptop, on-premise, or to cloud. Since you own the deployment, your user data and chats are fully in your own control. Danswer is MIT licensed and designed to be modular and easily extensible. The system also comes fully ready for production usage with user authentication, role management (admin/basic users), chat persistence, and a UI for configuring Personas (AI Assistants) and their Prompts. Danswer also serves as a Unified Search across all common workplace tools such as Slack, Google Drive, Confluence, etc. By combining LLMs and team specific knowledge, Danswer becomes a subject matter expert for the team. Imagine ChatGPT if it had access to your team's unique knowledge! It enables questions such as "A customer wants feature X, is this already supported?" or "Where's the pull request for feature Y?"

semantic-kernel
Semantic Kernel is an SDK that integrates Large Language Models (LLMs) like OpenAI, Azure OpenAI, and Hugging Face with conventional programming languages like C#, Python, and Java. Semantic Kernel achieves this by allowing you to define plugins that can be chained together in just a few lines of code. What makes Semantic Kernel _special_ , however, is its ability to _automatically_ orchestrate plugins with AI. With Semantic Kernel planners, you can ask an LLM to generate a plan that achieves a user's unique goal. Afterwards, Semantic Kernel will execute the plan for the user.

floneum
Floneum is a graph editor that makes it easy to develop your own AI workflows. It uses large language models (LLMs) to run AI models locally, without any external dependencies or even a GPU. This makes it easy to use LLMs with your own data, without worrying about privacy. Floneum also has a plugin system that allows you to improve the performance of LLMs and make them work better for your specific use case. Plugins can be used in any language that supports web assembly, and they can control the output of LLMs with a process similar to JSONformer or guidance.

mindsdb
MindsDB is a platform for customizing AI from enterprise data. You can create, serve, and fine-tune models in real-time from your database, vector store, and application data. MindsDB "enhances" SQL syntax with AI capabilities to make it accessible for developers worldwide. With MindsDB’s nearly 200 integrations, any developer can create AI customized for their purpose, faster and more securely. Their AI systems will constantly improve themselves — using companies’ own data, in real-time.

aiscript
AiScript is a lightweight scripting language that runs on JavaScript. It supports arrays, objects, and functions as first-class citizens, and is easy to write without the need for semicolons or commas. AiScript runs in a secure sandbox environment, preventing infinite loops from freezing the host. It also allows for easy provision of variables and functions from the host.

activepieces
Activepieces is an open source replacement for Zapier, designed to be extensible through a type-safe pieces framework written in Typescript. It features a user-friendly Workflow Builder with support for Branches, Loops, and Drag and Drop. Activepieces integrates with Google Sheets, OpenAI, Discord, and RSS, along with 80+ other integrations. The list of supported integrations continues to grow rapidly, thanks to valuable contributions from the community. Activepieces is an open ecosystem; all piece source code is available in the repository, and they are versioned and published directly to npmjs.com upon contributions. If you cannot find a specific piece on the pieces roadmap, please submit a request by visiting the following link: Request Piece Alternatively, if you are a developer, you can quickly build your own piece using our TypeScript framework. For guidance, please refer to the following guide: Contributor's Guide

superagent-js
Superagent is an open source framework that enables any developer to integrate production ready AI Assistants into any application in a matter of minutes.
For similar jobs

weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.

LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.

VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.

kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.

PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.

tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.

spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.

Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.