aiocache

aiocache

Asyncio cache manager for redis, memcached and memory

Stars: 1045

Visit
 screenshot

Aiocache is an asyncio cache library that supports multiple backends such as memory, redis, and memcached. It provides a simple interface for functions like add, get, set, multi_get, multi_set, exists, increment, delete, clear, and raw. Users can easily install and use the library for caching data in Python applications. Aiocache allows for easy instantiation of caches and setup of cache aliases for reusing configurations. It also provides support for backends, serializers, and plugins to customize cache operations. The library offers detailed documentation and examples for different use cases and configurations.

README:

aiocache ########

Asyncio cache supporting multiple backends (memory, redis and memcached).

.. image:: https://travis-ci.org/argaen/aiocache.svg?branch=master :target: https://travis-ci.org/argaen/aiocache

.. image:: https://codecov.io/gh/argaen/aiocache/branch/master/graph/badge.svg :target: https://codecov.io/gh/argaen/aiocache

.. image:: https://badge.fury.io/py/aiocache.svg :target: https://pypi.python.org/pypi/aiocache

.. image:: https://img.shields.io/pypi/pyversions/aiocache.svg :target: https://pypi.python.org/pypi/aiocache

.. image:: https://api.codacy.com/project/badge/Grade/96f772e38e63489ca884dbaf6e9fb7fd :target: https://www.codacy.com/app/argaen/aiocache

.. image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/ambv/black

This library aims for simplicity over specialization. All caches contain the same minimum interface which consists on the following functions:

  • add: Only adds key/value if key does not exist.
  • get: Retrieve value identified by key.
  • set: Sets key/value.
  • multi_get: Retrieves multiple key/values.
  • multi_set: Sets multiple key/values.
  • exists: Returns True if key exists False otherwise.
  • increment: Increment the value stored in the given key.
  • delete: Deletes key and returns number of deleted items.
  • clear: Clears the items stored.
  • raw: Executes the specified command using the underlying client.

.. role:: python(code) :language: python

.. contents::

.. section-numbering:

Installing

  • pip install aiocache
  • pip install aiocache[redis]
  • pip install aiocache[memcached]
  • pip install aiocache[redis,memcached]
  • pip install aiocache[msgpack]

Usage

Using a cache is as simple as

.. code-block:: python

>>> import asyncio
>>> from aiocache import Cache
>>> cache = Cache(Cache.MEMORY) # Here you can also use Cache.REDIS and Cache.MEMCACHED, default is Cache.MEMORY
>>> with asyncio.Runner() as runner:
>>>     runner.run(cache.set('key', 'value'))
True
>>>     runner.run(cache.get('key'))
'value'

Or as a decorator

.. code-block:: python

import asyncio

from collections import namedtuple

from aiocache import cached, Cache
from aiocache.serializers import PickleSerializer
# With this we can store python objects in backends like Redis!

Result = namedtuple('Result', "content, status")


@cached(
    ttl=10, cache=Cache.REDIS, key="key", serializer=PickleSerializer(), port=6379, namespace="main")
async def cached_call():
    print("Sleeping for three seconds zzzz.....")
    await asyncio.sleep(3)
    return Result("content", 200)


async def run():
    await cached_call()
    await cached_call()
    await cached_call()
    cache = Cache(Cache.REDIS, endpoint="127.0.0.1", port=6379, namespace="main")
    await cache.delete("key")

if __name__ == "__main__":
    asyncio.run(run())

The recommended approach to instantiate a new cache is using the Cache constructor. However you can also instantiate directly using aiocache.RedisCache, aiocache.SimpleMemoryCache or aiocache.MemcachedCache.

You can also setup cache aliases so its easy to reuse configurations

.. code-block:: python

import asyncio

from aiocache import caches

You can use either classes or strings for referencing classes

caches.set_config({ 'default': { 'cache': "aiocache.SimpleMemoryCache", 'serializer': { 'class': "aiocache.serializers.StringSerializer" } }, 'redis_alt': { 'cache': "aiocache.RedisCache", 'endpoint': "127.0.0.1", 'port': 6379, 'timeout': 1, 'serializer': { 'class': "aiocache.serializers.PickleSerializer" }, 'plugins': [ {'class': "aiocache.plugins.HitMissRatioPlugin"}, {'class': "aiocache.plugins.TimingPlugin"} ] } })

async def default_cache(): cache = caches.get('default') # This always returns the SAME instance await cache.set("key", "value") assert await cache.get("key") == "value"

async def alt_cache(): cache = caches.create('redis_alt') # This creates a NEW instance on every call await cache.set("key", "value") assert await cache.get("key") == "value"

async def test_alias(): await default_cache() await alt_cache()

  await caches.get("redis_alt").delete("key")

if name == "main": asyncio.run(test_alias())

How does it work

Aiocache provides 3 main entities:

  • backends: Allow you specify which backend you want to use for your cache. Currently supporting: SimpleMemoryCache, RedisCache using redis_ and MemCache using aiomcache_.
  • serializers: Serialize and deserialize the data between your code and the backends. This allows you to save any Python object into your cache. Currently supporting: StringSerializer, PickleSerializer, JsonSerializer, and MsgPackSerializer. But you can also build custom ones.
  • plugins: Implement a hooks system that allows to execute extra behavior before and after of each command.

If you are missing an implementation of backend, serializer or plugin you think it could be interesting for the package, do not hesitate to open a new issue.

.. image:: docs/images/architecture.png :align: center

Those 3 entities combine during some of the cache operations to apply the desired command (backend), data transformation (serializer) and pre/post hooks (plugins). To have a better vision of what happens, here you can check how set function works in aiocache:

.. image:: docs/images/set_operation_flow.png :align: center

Amazing examples

In examples folder <https://github.com/argaen/aiocache/tree/master/examples>_ you can check different use cases:

  • Sanic, Aiohttp and Tornado <https://github.com/argaen/aiocache/tree/master/examples/frameworks>_
  • Python object in Redis <https://github.com/argaen/aiocache/blob/master/examples/python_object.py>_
  • Custom serializer for compressing data <https://github.com/argaen/aiocache/blob/master/examples/serializer_class.py>_
  • TimingPlugin and HitMissRatioPlugin demos <https://github.com/argaen/aiocache/blob/master/examples/plugins.py>_
  • Using marshmallow as a serializer <https://github.com/argaen/aiocache/blob/master/examples/marshmallow_serializer_class.py>_
  • Using cached decorator <https://github.com/argaen/aiocache/blob/master/examples/cached_decorator.py>_.
  • Using multi_cached decorator <https://github.com/argaen/aiocache/blob/master/examples/multicached_decorator.py>_.

Documentation

  • Usage <http://aiocache.readthedocs.io/en/latest>_
  • Caches <http://aiocache.readthedocs.io/en/latest/caches.html>_
  • Serializers <http://aiocache.readthedocs.io/en/latest/serializers.html>_
  • Plugins <http://aiocache.readthedocs.io/en/latest/plugins.html>_
  • Configuration <http://aiocache.readthedocs.io/en/latest/configuration.html>_
  • Decorators <http://aiocache.readthedocs.io/en/latest/decorators.html>_
  • Testing <http://aiocache.readthedocs.io/en/latest/testing.html>_
  • Examples <https://github.com/argaen/aiocache/tree/master/examples>_

.. _redis: https://github.com/redis/redis-py .. _aiomcache: https://github.com/aio-libs/aiomcache

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for aiocache

Similar Open Source Tools

For similar tasks

For similar jobs