matsciml
Open MatSci ML Toolkit is a framework for prototyping and scaling out deep learning models for materials discovery supporting widely used materials science datasets, and built on top of PyTorch Lightning, the Deep Graph Library, and PyTorch Geometric.
Stars: 141
The Open MatSci ML Toolkit is a flexible framework for machine learning in materials science. It provides a unified interface to a variety of materials science datasets, as well as a set of tools for data preprocessing, model training, and evaluation. The toolkit is designed to be easy to use for both beginners and experienced researchers, and it can be used to train models for a wide range of tasks, including property prediction, materials discovery, and materials design.
README:
This is the implementation of the MatSci ML benchmark, which includes ~1.5 million ground-state materials collected from various datasets, as well as integration of the OpenCatalyst dataset supporting diverse data format (point cloud, DGL graphs, PyG graphs), learning methods (single task, multi-task, multi-data) and deep learning models. Primary project contributors include: Santiago Miret (Intel Labs), Kin Long Kelvin Lee (Intel AXG), Carmelo Gonzales (Intel Labs), Mikhail Galkin (Intel Labs), Marcel Nassar (Intel Labs), Matthew Spellings (Vector Institute).
- [2024/08/23] Readthedocs is now online!
- [2023/09/27] Release of pre-packaged lmdb-based datasets from v1.0.0 via Zenodo.
- [2023/08/31] Initial release of the MatSci ML Benchmark with integration of ~1.5 million ground state materials.
- [2023/07/31] The Open MatSci ML Toolkit : A Flexible Framework for Deep Learning on the OpenCatalyst Dataset paper is accepted into TMLR. See previous version for code related to the benchmark.
The MatSci ML Benchmark contains diverse sets of tasks (energy prediction, force prediction, property prediction) across a broad range of datasets (OpenCatalyst Project [1], Materials Project [2], LiPS [3], OQMD [4], NOMAD [5], Carolina Materials Database [6]). Most of the data is related to energy prediction task, which is the most common property tracked for most materials systems in the literature. The codebase support single-task learning, as well as multi-task (training one model for multiple tasks within a dataset) and multi-date (training a model across multiple datsets with a common property). Additionally, we provide a generative materials pipeline that applies diffusion models (CDVAE [7]) to generate new unit cells.
The package follows the original design principles of the Open MatSci ML Toolkit, including:
- Ease of use for new ML researchers and practitioners that want get started on interacting with the OpenCatalyst dataset.
- Scalable computation of experiments leveraging PyTorch Lightning across different computation capabilities (laptop, server, cluster) and hardware platforms (CPU, GPU, XPU) without sacrificing performance in the compute and modeling.
- Integrating support for DGL and PyTorch Geometric for rapid GNN development.
The examples outlined in the next section how to get started with Open MatSci ML Toolkit using simple Python scripts, Jupyter notebooks, or the PyTorch Lightning CLI for a simple training on a portable subset of the original dataset (dev-set) that can be run on a laptop. Subsequently, we scale our example python script to large compute systems, including distributed data parallel training (multiple GPU on a single node) and multi-node training (multiple GPUs across multiple nodes) in a computing cluster. Leveraging both PyTorch Lightning and DGL capabilities, we can enable the compute and experiment scaling with minimal additional complexity.
-
Docker
: We provide a Dockerfile inside thedocker
that can be run to install a container using standard docker commands. -
Conda
: We have included aconda
specification that provides a complete installation including XPU support for PyTorch. Runconda env create -n matsciml --file conda.yml
, and in the newly created environment, runpip install './[all]'
to install all of the dependencies. -
pip
: In some cases, you might want to installmatsciml
to an existing environment. Due to how DGL distributes wheels, you will need to add an extra index URL when installing viapip
. As an example:pip install -f https://data.dgl.ai/wheels/repo.html './[all]'
will install all thematsciml
dependencies, in addition to tellingpip
where to look for CPU-only DGL wheels for your particular platform and Python version. Please consult the DGL documentation for additional help.
Additionally, for a development install, one can specify the extra packages like black
and pytest
with pip install './[dev]'
. These can be
added to the commit workflow by running pre-commit install
to generate git
hooks.
There are currently extra requirements in getting a complete software environment in order to run
on Intel XPUs, namely runtime libraries that can't be packaged cohesively together (yet). While
conda.yml
provides all of the high performance Python requirements (i.e. PyTorch and IPEX),
we assume you have downloaded and sourced the oneAPI base toolkit (==2024.0.0). On managed
clusters, sysadmins will usually provide modules (i.e. module avail
/module load oneapi
);
on free clusters or workstations, please refer to instructions found here with
the appropriate version (currently 2.1.0
). Specific requirements are MKL==2024.0,
and oneCCL==2021.11.0 with the current IPEX (2.1.10+xpu) and oneccl_bind_pt
(2.1.100+xpu).
MKL>=2024.1, at the time of writing, is incompatiable with the IPEX version.
The module matsciml.lightning.xpu
implements interfaces for Intel XPU to Lightning abstractions, including
the XPUAccelerator
and two strategies for deployment (single XPU/tile and distributed data parallel).
Because we use PyTorch Lightning, there aren't many marked differences in running on Intel XPU, or GPUs
from other vendors. The abstractions we mentioned are registered in the various Lightning registries,
and should be accessible simply through pl.Trainer
arguments, e.g.:
trainer = pl.Trainer(accelerator='xpu')
The one major difference is for distributed data parallelism: Intel XPUs use the oneCCL communication
backend, which replaces nccl
, gloo
, or other backends typically passed to torch.distributed
.
Please see examples/devices
for single XPU/tile and DDP use cases.
NOTE: Currently there is a hard-coded torch.cuda.stream
context in PyTorch Lightning's DDPStrategy
.
This issue has been created to see if the maintainers would be happy to patch
it so that the cuda.Stream
context is only used if a CUDA device is being used. If you encounter
a RuntimeError: Tried to instantiate dummy base class Stream
, please just set ctx = nullcontext()
in the line of code that raises the exception.
The examples
folder contains simple, unit scripts that demonstrate how to use the pipeline in specific ways:
Get started with different datasets with "devsets"
# Materials project
python examples/datasets/materials_project/single_task_devset.py
# Carolina materials database
python examples/datasets/carolina_db/single_task_devset.py
# NOMAD
python examples/datasets/nomad/single_task_devset.py
# OQMD
python examples/datasets/oqmd/single_task_devset.py
Representation learning with symmetry pretraining
# uses the devset for synthetic point group point clouds
python examples/tasks/symmetry/single_symmetry_example.py
Example notebook-based development and testing
jupyter notebook examples/devel-example.ipynb
For more advanced use cases:
Checkout materials generation with CDVAE
CDVAE [7] is a latent diffusion model that trains a VAE on the reconstruction objective, adds Gaussian noise to the latent variable, and learns to predict the noise. The noised and generated features inlcude lattice parameters, atoms composition, and atom coordinates. The generation process is based on the annealed Langevin dynamics.
CDVAE is implemented in the GenerationTask
and we provide a custom data
split from the Materials Project bounded by 25 atoms per structure.
The process is split into 3 parts with 3 respective scripts found in
examples/model_demos/cdvae/
.
- Training CDVAE on the reconstruction and denoising objectives:
cdvae.py
- Sampling the structures (from scratch or reconstruct the test set):
cdvae_inference.py
- Evaluating the sampled structures:
cdvae_metrics.py
The sampling procedure takes some time (about 5-8 hours for 10000 structures
depending on the hardware) due to the Langevin dynamics.
The default hyperparameters of CDVAE components correspond to that from the
original paper and can be found in cdvae_configs.py
.
# training
python examples/model_demos/cdvae/cdvae.py --data_path <path/to/splits>
# sampling 10,000 structures from scratch
python examples/model_demos/cdvae/cdvae_inference.py --model_path <path/to/checkpoint> --data_path <path/to/splits> --tasks gen
# evaluating the sampled structures
python examples/model_demos/cdvae/cdvae_metrics.py --root_path <path/to/generated_samples> --data_path <path/to/splits> --tasks gen
Multiple tasks trained using the same dataset
# this script requires modification as you'll need to download the materials
# project dataset, and point L24 to the folder where it was saved
python examples/tasks/multitask/single_data_multitask_example.py
Utilizes Materials Project data to train property regression and material classification jointly
Multiple tasks trained using multiple datasets
python examples/tasks/multitask/three_datasets.py
Train regression tasks against IS2RE, S2EF, and LiPS datasets jointly
In the scripts
folder you will find two scripts needed to download and preprocess datasets: the download_datasets.py
can be used to obtain Carolina DB, Materials Project, NOMAD, and OQMD datasets, while the download_ocp_data.py
preserves the original Open Catalyst script.
In the current release, we have implemented interfaces to a number of large scale materials science datasets. Under the hood, the data structures pulled from each dataset have been homogenized, and the only real interaction layer for users is through the MatSciMLDataModule
, a subclass of LightningDataModule
.
from matsciml.lightning.data_utils import MatSciMLDataModule
# no configuration needed, although one can specify the batch size and number of workers
devset_module = MatSciMLDataModule.from_devset(dataset="MaterialsProjectDataset")
This will let you springboard into development without needing to worry about how to wrangle with the datasets; just grab a batch and go! With the exception of Open Catalyst, datasets will typically return point cloud representations; we provide a flexible transform interface to interconvert between representations and frameworks:
From point clouds to DGL graphs
from matsciml.datasets.transforms import PointCloudToGraphTransform
# make the materials project dataset emit DGL graphs, based on a atom-atom distance cutoff of 10
devset = MatSciMLDataModule.from_devset(
dataset="MaterialsProjectDataset",
dset_kwargs={"transforms": [PointCloudToGraphTransform(backend="dgl", cutoff_dist=10.)]}
)
But I want to use PyG?
from matsciml.datasets.transforms import PointCloudToGraphTransform
# change the backend argument to obtain PyG graphs
devset = MatSciMLDataModule.from_devset(
dataset="MaterialsProjectDataset",
dset_kwargs={"transforms": [PointCloudToGraphTransform(backend="pyg", cutoff_dist=10.)]}
)
What else can I configure with `MatSciMLDataModule`?
Datasets beyond devsets can be configured through class arguments:
devset = MatSciMLDataModule(
dataset="MaterialsProjectDataset",
train_path="/path/to/training/lmdb/folder",
batch_size=64,
num_workers=4, # configure data loader instances
dset_kwargs={"transforms": [PointCloudToGraphTransform(backend="pyg", cutoff_dist=10.)]},
val_split="/path/to/val/lmdb/folder"
)
In particular, val_split
and test_split
can point to their LMDB folders, or just a float between [0,1] to do quick, uniform splits. The rest, including distributed sampling, will be taken care of for you under the hood.
How do I compose multiple datasets?
Given the amount of configuration involved, composing multiple datasets takes a little more work but we have tried to make it as seamless as possible. The main difference from the single dataset case is replacing MatSciMLDataModule
with MultiDataModule
from matsciml.lightning.data_utils
, configuring each dataset manually, and passing them collectively into the data module:
from matsciml.datasets import MaterialsProjectDataset, OQMDDataset, MultiDataset
from matsciml.lightning.data_utils import MultiDataModule
# configure training only here, but same logic extends to validation/test splits
train_dset = MultiDataset(
[
MaterialsProjectDataset("/path/to/train/materialsproject"),
OQMDDataset("/path/to/train/oqmd")
]
)
# this configures the actual data module passed into Lightning
datamodule = MultiDataModule(
batch_size=32,
num_workers=4,
train_dataset=train_dset
)
While it does require a bit of extra work, this was to ensure flexibility in how you can compose datasets. We welcome feedback on the user experience! 😃
In Open MatSci ML Toolkit, tasks effective form learning objectives: at a high level, a task takes an encoding model/backbone that ingests a structure to predict one or several properties, or classify a material. In the single task case, there may be multiple targets and the neural network architecture may be fluid, but there is only one optimizer. Under this definition, multi-task learning comprises multiple tasks and optimizers operating jointly through a single embedding.
- [1] Chanussot, L., Das, A., Goyal, S., Lavril, T., Shuaibi, M., Riviere, M., Tran, K., Heras-Domingo, J., Ho, C., Hu, W. and Palizhati, A., 2021. Open catalyst 2020 (OC20) dataset and community challenges. Acs Catalysis, 11(10), pp.6059-6072.
- [2] Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G. and Persson, K.A., 2013. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL materials, 1(1).
- [3] Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J.P., Kornbluth, M., Molinari, N., Smidt, T.E. and Kozinsky, B., 2022. E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nature communications, 13(1), p.2453.
- [4] Kirklin, S., Saal, J.E., Meredig, B., Thompson, A., Doak, J.W., Aykol, M., Rühl, S. and Wolverton, C., 2015. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Computational Materials, 1(1), pp.1-15.
- [5] Draxl, C. and Scheffler, M., 2019. The NOMAD laboratory: from data sharing to artificial intelligence. Journal of Physics: Materials, 2(3), p.036001.
- [6] Zhao, Y., Al‐Fahdi, M., Hu, M., Siriwardane, E.M., Song, Y., Nasiri, A. and Hu, J., 2021. High‐throughput discovery of novel cubic crystal materials using deep generative neural networks. Advanced Science, 8(20), p.2100566.
- [7] Xie, T., Fu, X., Ganea, O.E., Barzilay, R. and Jaakkola, T.S., 2021, October. Crystal Diffusion Variational Autoencoder for Periodic Material Generation. In International Conference on Learning Representations.
Please refer to the developers guide for how to contribute the the Open MatSciML Toolkit.
If you use Open MatSci ML Toolkit in your technical work or publication, we would appreciate it if you cite the Open MatSci ML Toolkit paper in TMLR:
Miret, S.; Lee, K. L. K.; Gonzales, C.; Nassar, M.; Spellings, M. The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science. Transactions on Machine Learning Research, 2023.
@article{openmatscimltoolkit,
title = {The Open {{MatSci ML}} Toolkit: {{A}} Flexible Framework for Machine Learning in Materials Science},
author = {Miret, Santiago and Lee, Kin Long Kelvin and Gonzales, Carmelo and Nassar, Marcel and Spellings, Matthew},
year = {2023},
journal = {Transactions on Machine Learning Research},
issn = {2835-8856}
}
If you use v1.0.0, please cite our paper:
Lee, K. L. K., Gonzales, C., Nassar, M., Spellings, M., Galkin, M., & Miret, S. (2023). MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling. arXiv preprint arXiv:2309.05934.
@article{lee2023matsciml,
title={MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling},
author={Lee, Kin Long Kelvin and Gonzales, Carmelo and Nassar, Marcel and Spellings, Matthew and Galkin, Mikhail and Miret, Santiago},
journal={arXiv preprint arXiv:2309.05934},
year={2023}
}
Please cite datasets used in your work as well. You can find additional descriptions and details regarding each dataset here.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for matsciml
Similar Open Source Tools
matsciml
The Open MatSci ML Toolkit is a flexible framework for machine learning in materials science. It provides a unified interface to a variety of materials science datasets, as well as a set of tools for data preprocessing, model training, and evaluation. The toolkit is designed to be easy to use for both beginners and experienced researchers, and it can be used to train models for a wide range of tasks, including property prediction, materials discovery, and materials design.
curator
Bespoke Curator is an open-source tool for data curation and structured data extraction. It provides a Python library for generating synthetic data at scale, with features like programmability, performance optimization, caching, and integration with HuggingFace Datasets. The tool includes a Curator Viewer for dataset visualization and offers a rich set of functionalities for creating and refining data generation strategies.
lerobot
LeRobot is a state-of-the-art AI library for real-world robotics in PyTorch. It aims to provide models, datasets, and tools to lower the barrier to entry to robotics, focusing on imitation learning and reinforcement learning. LeRobot offers pretrained models, datasets with human-collected demonstrations, and simulation environments. It plans to support real-world robotics on affordable and capable robots. The library hosts pretrained models and datasets on the Hugging Face community page.
lotus
LOTUS (LLMs Over Tables of Unstructured and Structured Data) is a query engine that provides a declarative programming model and an optimized query engine for reasoning-based query pipelines over structured and unstructured data. It offers a simple and intuitive Pandas-like API with semantic operators for fast and easy LLM-powered data processing. The tool implements a semantic operator programming model, allowing users to write AI-based pipelines with high-level logic and leaving the rest of the work to the query engine. LOTUS supports various semantic operators like sem_map, sem_filter, sem_extract, sem_agg, sem_topk, sem_join, sem_sim_join, and sem_search, enabling users to perform tasks like mapping records, filtering data, aggregating records, and more. The tool also supports different model classes such as LM, RM, and Reranker for language modeling, retrieval, and reranking tasks respectively.
mimir
MIMIR is a Python package designed for measuring memorization in Large Language Models (LLMs). It provides functionalities for conducting experiments related to membership inference attacks on LLMs. The package includes implementations of various attacks such as Likelihood, Reference-based, Zlib Entropy, Neighborhood, Min-K% Prob, Min-K%++, Gradient Norm, and allows users to extend it by adding their own datasets and attacks.
ontogpt
OntoGPT is a Python package for extracting structured information from text using large language models, instruction prompts, and ontology-based grounding. It provides a command line interface and a minimal web app for easy usage. The tool has been evaluated on test data and is used in related projects like TALISMAN for gene set analysis. OntoGPT enables users to extract information from text by specifying relevant terms and provides the extracted objects as output.
kvpress
This repository implements multiple key-value cache pruning methods and benchmarks using transformers, aiming to simplify the development of new methods for researchers and developers in the field of long-context language models. It provides a set of 'presses' that compress the cache during the pre-filling phase, with each press having a compression ratio attribute. The repository includes various training-free presses, special presses, and supports KV cache quantization. Users can contribute new presses and evaluate the performance of different presses on long-context datasets.
probsem
ProbSem is a repository that provides a framework to leverage large language models (LLMs) for assigning context-conditional probability distributions over queried strings. It supports OpenAI engines and HuggingFace CausalLM models, and is flexible for research applications in linguistics, cognitive science, program synthesis, and NLP. Users can define prompts, contexts, and queries to derive probability distributions over possible completions, enabling tasks like cloze completion, multiple-choice QA, semantic parsing, and code completion. The repository offers CLI and API interfaces for evaluation, with options to customize models, normalize scores, and adjust temperature for probability distributions.
easydist
EasyDist is an automated parallelization system and infrastructure designed for multiple ecosystems. It offers usability by making parallelizing training or inference code effortless with just a single line of change. It ensures ecological compatibility by serving as a centralized source of truth for SPMD rules at the operator-level for various machine learning frameworks. EasyDist decouples auto-parallel algorithms from specific frameworks and IRs, allowing for the development and benchmarking of different auto-parallel algorithms in a flexible manner. The architecture includes MetaOp, MetaIR, and the ShardCombine Algorithm for SPMD sharding rules without manual annotations.
dbt-airflow
A Python package that helps Data and Analytics engineers render dbt projects in Apache Airflow DAGs. It enables teams to automatically render their dbt projects in a granular level, creating individual Airflow tasks for every model, seed, snapshot, and test within the dbt project. This allows for full control at the task-level, improving visibility and management of data models within the team.
monitors4codegen
This repository hosts the official code and data artifact for the paper 'Monitor-Guided Decoding of Code LMs with Static Analysis of Repository Context'. It introduces Monitor-Guided Decoding (MGD) for code generation using Language Models, where a monitor uses static analysis to guide the decoding. The repository contains datasets, evaluation scripts, inference results, a language server client 'multilspy' for static analyses, and implementation of various monitors monitoring for different properties in 3 programming languages. The monitors guide Language Models to adhere to properties like valid identifier dereferences, correct number of arguments to method calls, typestate validity of method call sequences, and more.
x-lstm
This repository contains an unofficial implementation of the xLSTM model introduced in Beck et al. (2024). It serves as a didactic tool to explain the details of a modern Long-Short Term Memory model with competitive performance against Transformers or State-Space models. The repository also includes a Lightning-based implementation of a basic LLM for multi-GPU training. It provides modules for scalar-LSTM and matrix-LSTM, as well as an xLSTM LLM built using Pytorch Lightning for easy training on multi-GPUs.
web-llm
WebLLM is a modular and customizable javascript package that directly brings language model chats directly onto web browsers with hardware acceleration. Everything runs inside the browser with no server support and is accelerated with WebGPU. WebLLM is fully compatible with OpenAI API. That is, you can use the same OpenAI API on any open source models locally, with functionalities including json-mode, function-calling, streaming, etc. We can bring a lot of fun opportunities to build AI assistants for everyone and enable privacy while enjoying GPU acceleration.
VulBench
This repository contains materials for the paper 'How Far Have We Gone in Vulnerability Detection Using Large Language Model'. It provides a tool for evaluating vulnerability detection models using datasets such as d2a, ctf, magma, big-vul, and devign. Users can query the model 'Llama-2-7b-chat-hf' and store results in a SQLite database for analysis. The tool supports binary and multiple classification tasks with concurrency settings. Additionally, users can evaluate the results and generate a CSV file with metrics for each dataset and prompt type.
palimpzest
Palimpzest (PZ) is a tool for managing and optimizing workloads, particularly for data processing tasks. It provides a CLI tool and Python demos for users to register datasets, run workloads, and access results. Users can easily initialize their system, register datasets, and manage configurations using the CLI commands provided. Palimpzest also supports caching intermediate results and configuring for parallel execution with remote services like OpenAI and together.ai. The tool aims to streamline the workflow of working with datasets and optimizing performance for data extraction tasks.
visualwebarena
VisualWebArena is a benchmark for evaluating multimodal autonomous language agents through diverse and complex web-based visual tasks. It builds on the reproducible evaluation introduced in WebArena. The repository provides scripts for end-to-end training, demos to run multimodal agents on webpages, and tools for setting up environments for evaluation. It includes trajectories of the GPT-4V + SoM agent on VWA tasks, along with human evaluations on 233 tasks. The environment supports OpenAI models and Gemini models for evaluation.
For similar tasks
matsciml
The Open MatSci ML Toolkit is a flexible framework for machine learning in materials science. It provides a unified interface to a variety of materials science datasets, as well as a set of tools for data preprocessing, model training, and evaluation. The toolkit is designed to be easy to use for both beginners and experienced researchers, and it can be used to train models for a wide range of tasks, including property prediction, materials discovery, and materials design.
aideml
AIDE is a machine learning code generation agent that can generate solutions for machine learning tasks from natural language descriptions. It has the following features: 1. **Instruct with Natural Language**: Describe your problem or additional requirements and expert insights, all in natural language. 2. **Deliver Solution in Source Code**: AIDE will generate Python scripts for the **tested** machine learning pipeline. Enjoy full transparency, reproducibility, and the freedom to further improve the source code! 3. **Iterative Optimization**: AIDE iteratively runs, debugs, evaluates, and improves the ML code, all by itself. 4. **Visualization**: We also provide tools to visualize the solution tree produced by AIDE for a better understanding of its experimentation process. This gives you insights not only about what works but also what doesn't. AIDE has been benchmarked on over 60 Kaggle data science competitions and has demonstrated impressive performance, surpassing 50% of Kaggle participants on average. It is particularly well-suited for tasks that require complex data preprocessing, feature engineering, and model selection.
For similar jobs
matsciml
The Open MatSci ML Toolkit is a flexible framework for machine learning in materials science. It provides a unified interface to a variety of materials science datasets, as well as a set of tools for data preprocessing, model training, and evaluation. The toolkit is designed to be easy to use for both beginners and experienced researchers, and it can be used to train models for a wide range of tasks, including property prediction, materials discovery, and materials design.
NoLabs
NoLabs is an open-source biolab that provides easy access to state-of-the-art models for bio research. It supports various tasks, including drug discovery, protein analysis, and small molecule design. NoLabs aims to accelerate bio research by making inference models accessible to everyone.
AlphaFold3
AlphaFold3 is an implementation of the Alpha Fold 3 model in PyTorch for accurate structure prediction of biomolecular interactions. It includes modules for genetic diffusion and full model examples for forward pass computations. The tool allows users to generate random pair and single representations, operate on atomic coordinates, and perform structure predictions based on input tensors. The implementation also provides functionalities for training and evaluating the model.
crystal-text-llm
This repository contains the code for the paper Fine-Tuned Language Models Generate Stable Inorganic Materials as Text. It demonstrates how finetuned LLMs can be used to generate stable materials, match or exceed the performance of domain specific models, mutate existing materials, and sample crystal structures conditioned on text descriptions. The method is distinct from CrystaLLM, which trains language models from scratch on CIF-formatted crystals.
Scientific-LLM-Survey
Scientific Large Language Models (Sci-LLMs) is a repository that collects papers on scientific large language models, focusing on biology and chemistry domains. It includes textual, molecular, protein, and genomic languages, as well as multimodal language. The repository covers various large language models for tasks such as molecule property prediction, interaction prediction, protein sequence representation, protein sequence generation/design, DNA-protein interaction prediction, and RNA prediction. It also provides datasets and benchmarks for evaluating these models. The repository aims to facilitate research and development in the field of scientific language modeling.
md-agent
MD-Agent is a LLM-agent based toolset for Molecular Dynamics. It uses Langchain and a collection of tools to set up and execute molecular dynamics simulations, particularly in OpenMM. The tool assists in environment setup, installation, and usage by providing detailed steps. It also requires API keys for certain functionalities, such as OpenAI and paper-qa for literature searches. Contributions to the project are welcome, with a detailed Contributor's Guide available for interested individuals.
AIMNet2
AIMNet2 Calculator is a package that integrates the AIMNet2 neural network potential into simulation workflows, providing fast and reliable energy, force, and property calculations for molecules with diverse elements. It excels at modeling various systems, offers flexible interfaces for popular simulation packages, and supports long-range interactions using DSF or Ewald summation Coulomb models. The tool is designed for accurate and versatile molecular simulations, suitable for large molecules and periodic calculations.
admet_ai
ADMET-AI is a platform for ADMET prediction using Chemprop-RDKit models trained on ADMET datasets from the Therapeutics Data Commons. It offers command line, Python API, and web server interfaces for making ADMET predictions on new molecules. The platform can be easily installed using pip and supports GPU acceleration. It also provides options for processing TDC data, plotting results, and hosting a web server. ADMET-AI is a machine learning platform for evaluating large-scale chemical libraries.