jambo

jambo

Jambo - JSON Schema to Pydantic Converter

Stars: 56

Visit
 screenshot

Jambo is a Python package that automatically converts JSON Schema definitions into Pydantic models. It streamlines schema validation and enforces type safety using Pydantic's validation features. The tool supports various JSON Schema features like strings, integers, floats, booleans, arrays, nested objects, and more. It enforces constraints such as minLength, maxLength, pattern, minimum, maximum, uniqueItems, and provides a zero-config approach for generating models. Jambo is designed to simplify the process of dynamically generating Pydantic models for AI frameworks.

README:

Jambo - JSON Schema to Pydantic Converter

Tests Coverage
Package version Python versions License

Jambo is a Python package that automatically converts JSON Schema definitions into Pydantic models. It's designed to streamline schema validation and enforce type safety using Pydantic's powerful validation features.

Created to simplifying the process of dynamically generating Pydantic models for AI frameworks like LangChain, CrewAI, and others.


✨ Features

  • ✅ Convert JSON Schema into Pydantic models dynamically;
  • 🔒 Supports validation for:
    • strings
    • integers
    • floats
    • booleans
    • arrays
    • nested objects
    • allOf
    • anyOf
    • oneOf
    • ref
    • enum
    • const
  • ⚙️ Enforces constraints like minLength, maxLength, pattern, minimum, maximum, uniqueItems, and more;
  • 📦 Zero config — just pass your schema and get a model.

📦 Installation

pip install jambo

🚀 Usage

from jambo import SchemaConverter


schema = {
    "title": "Person",
    "type": "object",
    "properties": {
        "name": {"type": "string"},
        "age": {"type": "integer"},
    },
    "required": ["name"],
}

Person = SchemaConverter.build(schema)

obj = Person(name="Alice", age=30)
print(obj)

✅ Example Validations

Following are some examples of how to use Jambo to create Pydantic models with various JSON Schema features, but for more information, please refer to the documentation.

Strings with constraints

from jambo import SchemaConverter


schema = {
    "title": "EmailExample",
    "type": "object",
    "properties": {
        "email": {
            "type": "string",
            "minLength": 5,
            "maxLength": 50,
            "pattern": r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$",
        },
    },
    "required": ["email"],
}

Model = SchemaConverter.build(schema)
obj = Model(email="[email protected]")
print(obj)

Integers with bounds

from jambo import SchemaConverter


schema = {
    "title": "AgeExample",
    "type": "object",
    "properties": {
        "age": {"type": "integer", "minimum": 0, "maximum": 120}
    },
    "required": ["age"],
}

Model = SchemaConverter.build(schema)
obj = Model(age=25)
print(obj)

Nested Objects

from jambo import SchemaConverter


schema = {
    "title": "NestedObjectExample",
    "type": "object",
    "properties": {
        "address": {
            "type": "object",
            "properties": {
                "street": {"type": "string"},
                "city": {"type": "string"},
            },
            "required": ["street", "city"],
        }
    },
    "required": ["address"],
}

Model = SchemaConverter.build(schema)
obj = Model(address={"street": "Main St", "city": "Gotham"})
print(obj)

References

from jambo import SchemaConverter


schema = {
    "title": "person",
    "$ref": "#/$defs/person",
    "$defs": {
        "person": {
            "type": "object",
            "properties": {
                "name": {"type": "string"},
                "age": {"type": "integer"},
                "emergency_contact": {
                    "$ref": "#/$defs/person",
                },
            },
        }
    },
}

model = SchemaConverter.build(schema)

obj = model(
    name="John",
    age=30,
    emergency_contact=model(
        name="Jane",
        age=28,
    ),
)

🧪 Running Tests

To run the test suite:

poe tests

Or manually:

python -m unittest discover -s tests -v

🛠 Development Setup

To set up the project locally:

  1. Clone the repository
  2. Install uv (if not already installed)
  3. Install dependencies:
uv sync
  1. Set up git hooks:
poe create-hooks

📌 Roadmap / TODO

  • [ ] Better error reporting for unsupported schema types

🤝 Contributing

PRs are welcome! This project uses MIT for licensing, so feel free to fork and modify as you see fit.


🧾 License

MIT License.

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for jambo

Similar Open Source Tools

For similar tasks

For similar jobs