Agentarium

Agentarium

open-source framework for creating and managing simulations populated with AI-powered agents. It provides an intuitive platform for designing complex, interactive environments where agents can act, learn, and evolve.

Stars: 668

Visit
 screenshot

Agentarium is a powerful Python framework for managing and orchestrating AI agents with ease. It provides a flexible and intuitive way to create, manage, and coordinate interactions between multiple AI agents in various environments. The framework offers advanced agent management, robust interaction management, a checkpoint system for saving and restoring agent states, data generation through agent interactions, performance optimization, flexible environment configuration, and an extensible architecture for customization.

README:

🌿 Agentarium

License: Apache 2.0 Python 3.10+ PyPI version

A powerful Python framework for managing and orchestrating AI agents with ease. Agentarium provides a flexible and intuitive way to create, manage, and coordinate interactions between multiple AI agents in various environments.

Installation β€’ Quick Start β€’ Features β€’ Examples β€’ Documentation β€’ Contributing

πŸš€ Installation

pip install agentarium

🎯 Quick Start

from agentarium import Agent

# Create agents
agent1 = Agent(name="agent1")
agent2 = Agent(name="agent2")

# Direct communication between agents
alice.talk_to(bob, "Hello Bob! I heard you're working on some interesting ML projects.")

# Agent autonomously decides its next action based on context
bob.act()

✨ Features

  • πŸ€– Advanced Agent Management: Create and orchestrate multiple AI agents with different roles and capabilities
  • πŸ”„ Autonomous Decision Making: Agents can make decisions and take actions based on their context
  • πŸ’Ύ Checkpoint System: Save and restore agent states and interactions for reproducibility
  • 🎭 Customizable Actions: Define custom actions beyond the default talk/think capabilities
  • 🧠 Memory & Context: Agents maintain memory of past interactions for contextual responses
  • ⚑ AI Integration: Seamless integration with various AI providers through aisuite
  • ⚑ Performance Optimized: Built for efficiency and scalability
  • πŸ› οΈ Extensible Architecture: Easy to extend and customize for your specific needs

πŸ“š Examples

Basic Chat Example

Create a simple chat interaction between agents:

from agentarium import Agent

# Create agents with specific characteristics
alice = Agent.create_agent(name="Alice", occupation="Software Engineer")
bob = Agent.create_agent(name="Bob", occupation="Data Scientist")

# Direct communication
alice.talk_to(bob, "Hello Bob! I heard you're working on some interesting projects.")

# Let Bob autonomously decide how to respond
bob.act()

Adding Custom Actions

Add new capabilities to your agents:

from agentarium import Agent, Action

# Define a simple greeting action
def greet(name: str, **kwargs) -> str:
    return f"Hello, {name}!"

# Create an agent and add the greeting action
agent = Agent.create_agent(name="Alice")
agent.add_action(
    Action(
        name="GREET",
        description="Greet someone by name",
        parameters=["name"],
        function=greet
    )
)

# Use the custom action
agent.execute_action("GREET", "Bob")

Using Checkpoints

Save and restore agent states:

from agentarium import Agent
from agentarium.CheckpointManager import CheckpointManager

# Initialize checkpoint manager
checkpoint = CheckpointManager("demo")

# Create and interact with agents
alice = Agent.create_agent(name="Alice")
bob = Agent.create_agent(name="Bob")

alice.talk_to(bob, "What a beautiful day!")
checkpoint.update(step="interaction_1")

# Save the current state
checkpoint.save()

More examples can be found in the examples/ directory.

πŸ“– Documentation

Agent Creation

Create agents with custom characteristics:

agent = Agent.create_agent(
    name="Alice",
    age=28,
    occupation="Software Engineer",
    location="San Francisco",
    bio="A passionate developer who loves AI"
)

LLM Configuration

Configure your LLM provider and credentials using a YAML file:

llm:
  provider: "openai"  # The LLM provider to use (any provider supported by aisuite)
  model: "gpt-4"      # The specific model to use from the provider

aisuite:              # (optional) Credentials for aisuite
  openai:            # Provider-specific configuration
    api_key: "sk-..."  # Your API key

Key Components

  • Agent: Core class for creating AI agents with personalities and autonomous behavior
  • CheckpointManager: Handles saving and loading of agent states and interactions
  • Action: Base class for defining custom agent actions
  • AgentInteractionManager: Manages and tracks all agent interactions

🀝 Contributing

Contributions are welcome! Here's how you can help:

  1. Fork the repository
  2. Create a new branch (git checkout -b feature/amazing-feature)
  3. Make your changes
  4. Commit your changes (git commit -m 'feat: add amazing feature')
  5. Push to the branch (git push origin feature/amazing-feature)
  6. Open a Pull Request

πŸ“„ License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.

πŸ™ Acknowledgments

Thanks to all contributors who have helped shape Agentarium 🫢

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for Agentarium

Similar Open Source Tools

For similar tasks

For similar jobs