jvm-openai

jvm-openai

A minimalistic OpenAI API client for the JVM, written in Java 🤖

Stars: 70

Visit
 screenshot

jvm-openai is a minimalistic unofficial OpenAI API client for the JVM, written in Java. It serves as a Java client for OpenAI API with a focus on simplicity and minimal dependencies. The tool provides support for various OpenAI APIs and endpoints, including Audio, Chat, Embeddings, Fine-tuning, Batch, Files, Uploads, Images, Models, Moderations, Assistants, Threads, Messages, Runs, Run Steps, Vector Stores, Vector Store Files, Vector Store File Batches, Invites, Users, Projects, Project Users, Project Service Accounts, Project API Keys, and Audit Logs. Users can easily integrate this tool into their Java projects to interact with OpenAI services efficiently.

README:

jvm-openai

build Quality Gate Status Maven Central javadoc

A minimalistic unofficial OpenAI API client for the JVM, written in Java. The only dependency used is Jackson for JSON parsing.

Requirements

jvm-openai works on Java 17+. Android support is not yet available.

Add dependency

Gradle

implementation("io.github.stefanbratanov:jvm-openai:${version}")

Maven

<dependency>
    <groupId>io.github.stefanbratanov</groupId>
    <artifactId>jvm-openai</artifactId>
    <version>${version}</version>
</dependency>

Minimal example

OpenAI openAI = OpenAI.newBuilder(System.getenv("OPENAI_API_KEY")).build();

ChatClient chatClient = openAI.chatClient();
CreateChatCompletionRequest createChatCompletionRequest = CreateChatCompletionRequest.newBuilder()
    .model(OpenAIModel.GPT_3_5_TURBO)
    .message(ChatMessage.userMessage("Who won the world series in 2020?"))
    .build();
ChatCompletion chatCompletion = chatClient.createChatCompletion(createChatCompletionRequest);

Supported APIs

Endpoints

API Status
Audio ✔️
Chat ✔️
Embeddings ✔️
Fine-tuning ✔️
Batch ✔️
Files ✔️
Uploads ✔️
Images ✔️
Models ✔️
Moderations ✔️

Assistants (Beta)

API Status
Assistants ✔️
Threads ✔️
Messages ✔️
Runs ✔️
Run Steps ✔️
Vector Stores ✔️
Vector Store Files ✔️
Vector Store File Batches ✔️

Administration

API Status
Admin API Keys
Invites ✔️
Users ✔️
Projects ✔️
Project Users ✔️
Project Service Accounts ✔️
Project API Keys ✔️
Project rate limits
Audit Logs ✔️
Usage

NOTE: Realtime and Legacy APIs are not supported

More examples

  • Configure an organization and project
OpenAI openAI = OpenAI.newBuilder(System.getenv("OPENAI_API_KEY"))
    .organization("org-zweLLamVlP6c5n66zY334ivs")
    .project(System.getenv("PROJECT_ID"))        
    .build();
  • Configure a custom base url
OpenAI openAI = OpenAI.newBuilder(System.getenv("OPENAI_API_KEY"))
    .baseUrl("https://api.foobar.com/v1/")     
    .build();
  • Configure a custom Java's HttpClient
HttpClient httpClient = HttpClient.newBuilder()
    .connectTimeout(Duration.ofSeconds(20))
    .executor(Executors.newFixedThreadPool(3))
    .proxy(ProxySelector.of(new InetSocketAddress("proxy.example.com", 80)))
    .build();
OpenAI openAI = OpenAI.newBuilder(System.getenv("OPENAI_API_KEY"))
    .httpClient(httpClient)
    .build();
  • Configure a timeout for all requests
OpenAI openAI = OpenAI.newBuilder(System.getenv("OPENAI_API_KEY"))
    .requestTimeout(Duration.ofSeconds(10))
    .build();
  • Create chat completion async
ChatClient chatClient = openAI.chatClient();
CreateChatCompletionRequest request = CreateChatCompletionRequest.newBuilder()
    .model(OpenAIModel.GPT_3_5_TURBO)
    .message(ChatMessage.userMessage("Who won the world series in 2020?"))
    .build();
CompletableFuture<ChatCompletion> chatCompletion = chatClient.createChatCompletionAsync(request);
chatCompletion.thenAccept(System.out::println);
  • Streaming
ChatClient chatClient = openAI.chatClient();
CreateChatCompletionRequest request = CreateChatCompletionRequest.newBuilder()
    .message(ChatMessage.userMessage("Who won the world series in 2020?"))
    .stream(true)
    .build();
// with java.util.stream.Stream
chatClient.streamChatCompletion(request).forEach(System.out::println);
// with subscriber
chatClient.streamChatCompletion(request, new ChatCompletionStreamSubscriber() {
    @Override
    public void onChunk(ChatCompletionChunk chunk) {
        System.out.println(chunk);
    }

    @Override
    public void onException(Throwable ex) {
        // ...
    }
    
    @Override
    public void onComplete() {
        // ...
    }
});
  • Create image
ImagesClient imagesClient = openAI.imagesClient();
CreateImageRequest createImageRequest = CreateImageRequest.newBuilder()
    .model(OpenAIModel.DALL_E_3)
    .prompt("A cute baby sea otter")
    .build();
Images images = imagesClient.createImage(createImageRequest);
  • Create speech
AudioClient audioClient = openAI.audioClient();
SpeechRequest request = SpeechRequest.newBuilder()
    .model(OpenAIModel.TTS_1)
    .input("The quick brown fox jumped over the lazy dog.")
    .voice(Voice.ALLOY)
    .build();
Path output = Paths.get("/tmp/speech.mp3");
audioClient.createSpeech(request, output);
  • Create translation
AudioClient audioClient = openAI.audioClient();
TranslationRequest request = TranslationRequest.newBuilder()
    .model(OpenAIModel.WHISPER_1)
    .file(Paths.get("/tmp/german.m4a"))
    .build();
String translatedText = audioClient.createTranslation(request);
  • List models
ModelsClient modelsClient = openAI.modelsClient();
List<Model> models = modelsClient.listModels();
  • Classify if text violates OpenAI's Content Policy
ModerationsClient moderationsClient = openAI.moderationsClient();
ModerationRequest request = ModerationRequest.newBuilder()
    .input("I want to bake a cake.")
    .build();
Moderation moderation = moderationsClient.createModeration(request);
boolean violence = moderation.results().get(0).categories().violence();
  • Create and execute a batch
// Upload JSONL file containing requests for the batch
FilesClient filesClient = openAI.filesClient();
UploadFileRequest uploadInputFileRequest = UploadFileRequest.newBuilder()
    .file(Paths.get("/tmp/batch-requests.jsonl"))
    .purpose(Purpose.BATCH)
    .build();
File inputFile = filesClient.uploadFile(uploadInputFileRequest);

BatchClient batchClient = openAI.batchClient();
CreateBatchRequest request = CreateBatchRequest.newBuilder()
    .inputFileId(inputFile.id())
    .endpoint("/v1/chat/completions")
    .completionWindow("24h")
    .build();
Batch batch = batchClient.createBatch(request);
// check status of the batch
Batch retrievedBatch = batchClient.retrieveBatch(batch.id());
System.out.println(retrievedBatch.status());      
  • Upload large file in multiple parts
UploadsClient uploadsClient = openAI.uploadsClient();
CreateUploadRequest createUploadRequest = CreateUploadRequest.newBuilder()
    .filename("training_examples.jsonl")
    .purpose(Purpose.FINE_TUNE)
    .bytes(2147483648)
    .mimeType("text/jsonl")
    .build();
Upload upload = uploadsClient.createUpload(createUploadRequest);

UploadPart part1 = uploadsClient.addUploadPart(upload.id(), Paths.get("/tmp/part1.jsonl"));
UploadPart part2 = uploadsClient.addUploadPart(upload.id(), Paths.get("/tmp/part2.jsonl"));

CompleteUploadRequest completeUploadRequest = CompleteUploadRequest.newBuilder()
    .partIds(List.of(part1.id(), part2.id()))
    .build();

Upload completedUpload = uploadsClient.completeUpload(upload.id(), completeUploadRequest);
// the created usable File object
File file = completedUpload.file();
  • Build AI Assistant
AssistantsClient assistantsClient = openAI.assistantsClient();
ThreadsClient threadsClient = openAI.threadsClient();
MessagesClient messagesClient = openAI.messagesClient();
RunsClient runsClient = openAI.runsClient();

// Step 1: Create an Assistant
CreateAssistantRequest createAssistantRequest = CreateAssistantRequest.newBuilder()
    .name("Math Tutor")
    .model(OpenAIModel.GPT_3_5_TURBO_1106)
    .instructions("You are a personal math tutor. Write and run code to answer math questions.")
    .tool(Tool.codeInterpreterTool())
    .build();
Assistant assistant = assistantsClient.createAssistant(createAssistantRequest);

// Step 2: Create a Thread
CreateThreadRequest createThreadRequest = CreateThreadRequest.newBuilder().build();
Thread thread = threadsClient.createThread(createThreadRequest);

// Step 3: Add a Message to a Thread
CreateMessageRequest createMessageRequest = CreateMessageRequest.newBuilder()
    .role(Role.USER)
    .content("I need to solve the equation `3x + 11 = 14`. Can you help me?")
    .build();
ThreadMessage message = messagesClient.createMessage(thread.id(), createMessageRequest);

// Step 4: Run the Assistant
CreateRunRequest createRunRequest = CreateRunRequest.newBuilder()
    .assistantId(assistant.id())
    .instructions("Please address the user as Jane Doe. The user has a premium account.")
    .build();
ThreadRun run = runsClient.createRun(thread.id(), createRunRequest);

// Step 5: Check the Run status
ThreadRun retrievedRun = runsClient.retrieveRun(thread.id(), run.id());
String status = retrievedRun.status();

// Step 6: Display the Assistant's Response
MessagesClient.PaginatedThreadMessages paginatedMessages = messagesClient.listMessages(thread.id(), PaginationQueryParameters.none(), Optional.empty());
List<ThreadMessage> messages = paginatedMessages.data();
  • Build AI Assistant with File Search Enabled
AssistantsClient assistantsClient = openAI.assistantsClient();
ThreadsClient threadsClient = openAI.threadsClient();
MessagesClient messagesClient = openAI.messagesClient();
RunsClient runsClient = openAI.runsClient();
VectorStoresClient vectorStoresClient = openAI.vectorStoresClient();
FilesClient filesClient = openAI.filesClient();
VectorStoreFileBatchesClient vectorStoreFileBatchesClient = openAI.vectorStoreFileBatchesClient();

// Step 1: Create a new Assistant with File Search Enabled
CreateAssistantRequest createAssistantRequest = CreateAssistantRequest.newBuilder()
    .name("Financial Analyst Assistant")
    .model(OpenAIModel.GPT_4_TURBO)
    .instructions("You are an expert financial analyst. Use you knowledge base to answer questions about audited financial statements.")
    .tool(Tool.fileSearchTool())
    .build();
Assistant assistant = assistantsClient.createAssistant(createAssistantRequest);

// Step 2: Upload files and add them to a Vector Store
CreateVectorStoreRequest createVectorStoreRequest = CreateVectorStoreRequest.newBuilder()
    .name("Financial Statements")
    .build();
VectorStore vectorStore = vectorStoresClient.createVectorStore(createVectorStoreRequest);
UploadFileRequest uploadFileRequest1 = UploadFileRequest.newBuilder()
    .file(Paths.get("edgar/goog-10k.pdf"))
    .purpose(Purpose.ASSISTANTS)
    .build();
File file1 = filesClient.uploadFile(uploadFileRequest1);
UploadFileRequest uploadFileRequest2 = UploadFileRequest.newBuilder()
    .file(Paths.get("edgar/brka-10k.txt"))
    .purpose(Purpose.ASSISTANTS)
    .build();
File file2 = filesClient.uploadFile(uploadFileRequest2);
CreateVectorStoreFileBatchRequest createVectorStoreFileBatchRequest = CreateVectorStoreFileBatchRequest.newBuilder()
    .fileIds(List.of(file1.id(), file2.id()))
    .build();
VectorStoreFileBatch batch = vectorStoreFileBatchesClient.createVectorStoreFileBatch(vectorStore.id(), createVectorStoreFileBatchRequest);
// need to query the status of the file batch for completion
vectorStoreFileBatchesClient.retrieveVectorStoreFileBatch(vectorStore.id(), batch.id());

// Step 3: Update the assistant to use the new Vector Store
ModifyAssistantRequest modifyAssistantRequest = ModifyAssistantRequest.newBuilder()
    .toolResources(ToolResources.fileSearchToolResources(vectorStore.id()))
    .build();
assistantsClient.modifyAssistant(assistant.id(), modifyAssistantRequest);

// Step 4: Create a thread
CreateThreadRequest.Message message = CreateThreadRequest.Message.newBuilder()
    .role(Role.USER)
    .content("How many shares of AAPL were outstanding at the end of of October 2023?")
    .build();
CreateThreadRequest createThreadRequest = CreateThreadRequest.newBuilder()
    .message(message)
    .build();
Thread thread = threadsClient.createThread(createThreadRequest);

// Step 5: Create a run and check the output
CreateRunRequest createRunRequest = CreateRunRequest.newBuilder()
    .assistantId(assistant.id())
    .instructions("Please address the user as Jane Doe. The user has a premium account.")
    .build();
ThreadRun run = runsClient.createRun(thread.id(), createRunRequest);
// check the run status
ThreadRun retrievedRun = runsClient.retrieveRun(thread.id(), run.id());
String status = retrievedRun.status();
// display the Assistant's Response
MessagesClient.PaginatedThreadMessages paginatedMessages = messagesClient.listMessages(thread.id(), PaginationQueryParameters.none(), Optional.empty());
List<ThreadMessage> messages = paginatedMessages.data();
RunsClient runsClient = openAI.runsClient();
CreateRunRequest createRunRequest = CreateRunRequest.newBuilder()
    .assistantId(assistant.id())
    .instructions("Please address the user as Jane Doe. The user has a premium account.")
    .stream(true)   
    .build();
// with java.util.stream.Stream
runsClient.createRunAndStream(thread.id(), createRunRequest).forEach(assistantStreamEvent -> {
    System.out.println(assistantStreamEvent.event());
    System.out.println(assistantStreamEvent.data());
});
// with subscriber
runsClient.createRunAndStream(thread.id(), createRunRequest, new AssistantStreamEventSubscriber() {
    @Override
    public void onThread(String event, Thread thread) {
        // ...
    }

    @Override
    public void onThreadRun(String event, ThreadRun threadRun) {
        // ...
    }

    @Override
    public void onThreadRunStep(String event, ThreadRunStep threadRunStep) {
        // ...
    }

    @Override
    public void onThreadRunStepDelta(String event, ThreadRunStepDelta threadRunStepDelta) {
        // ...
    }

    @Override
    public void onThreadMessage(String event, ThreadMessage threadMessage) {
        // ...
    }

    @Override
    public void onThreadMessageDelta(String event, ThreadMessageDelta threadMessageDelta) {
        // ...
    }

    @Override
    public void onUnknownEvent(String event, String data) {
        // ...
    }

    @Override
    public void onException(Throwable ex) {
        // ...
    }

    @Override
    public void onComplete() {
        // ...
    }    
});
// "createThreadAndRunAndStream" and "submitToolOutputsAndStream" methods are also available
  • List all the users in an organization.
OpenAI openAI = OpenAI.newBuilder()
    .adminKey(System.getenv("OPENAI_ADMIN_KEY"))     
    .build();

UsersClient usersClient = openAI.usersClient();
List<User> users = usersClient.listUsers(Optional.empty(), Optional.empty()).data();
  • List user actions and configuration changes within an organization
OpenAI openAI = OpenAI.newBuilder()
    .adminKey(System.getenv("OPENAI_ADMIN_KEY"))     
    .build();

AuditLogsClient auditLogsClient = openAI.auditLogsClient();
ListAuditLogsQueryParameters queryParameters = ListAuditLogsQueryParameters.newBuilder()
    .eventTypes(List.of("invite.sent", "invite.deleted"))
    .build();
List<AuditLog> auditLogs = auditLogsClient.listAuditLogs(queryParameters).data();

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for jvm-openai

Similar Open Source Tools

For similar tasks

For similar jobs