wenxin-starter

wenxin-starter

一款文心一言&文心千帆大模型的高性能springboot-starter,支持连续对话(流式返回)、Prompt模板、文生图等,内置连续对话记录,支持消息记录导出。 WenXinYiYin&WENXINWORKSHOP.

Stars: 207

Visit
 screenshot

WenXin-Starter is a spring-boot-starter for Baidu's "Wenxin Qianfan WENXINWORKSHOP" large model, which can help you quickly access Baidu's AI capabilities. It fully integrates the official API documentation of Wenxin Qianfan. Supports text-to-image generation, built-in dialogue memory, and supports streaming return of dialogue. Supports QPS control of a single model and supports queuing mechanism. Plugins will be added soon.

README:

中文  |  EN

gear-wenxinworkshop-starter

Spring Boot JDK Maven

LICENSE COMMIT LANG

# WenXin-Starter

项目简介

  • 百度 “文心千帆 WENXINWORKSHOP” 大模型的spring-boot-starter,可以帮助您快速接入百度的AI能力。
  • 完整对接文心千帆的官方API文档。
  • 支持文生图,内置对话记忆,支持对话的流式返回。
  • 支持单个模型的QPS控制,支持排队机制。
  • 即将增加插件支持。

快速开始

使用demo (1.x版,2.x请阅读文档)

【基于Springboot 3.0开发,所以要求JDK版本为17及以上】

1、添加依赖

  • Maven
<dependency>
  <groupId>io.github.gemingjia</groupId>
  <artifactId>wenxin-starter</artifactId>
  <version>2.0.0-beta4</version>
</dependency>
  • Gradle
dependencies {
  implementation 'io.github.gemingjia:wenxin-starter:2.0.0-beta4' 
}

2、添加access-token

  • application.yml & application.yaml

    gear:
      wenxin:
        access-token: xx.xxxxxxxxxx.xxxxxx.xxxxxxx.xxxxx-xxxx
    -------------或-----------------
    # 推荐
    gear:
      wenxin:
        api-key: xxxxxxxxxxxxxxxxxxx
        secret-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
  • application.properties

    gear.wenxin.access-token=xx.xxxxxxxxxx.xxxxxx.xxxxxxx.xxxxx-xxxx
  • 模型qps设置

    gear:
      wenxin:
        model-qps:
          # 模型名 QPS数量
          - Ernie 10
          - Lamma 10
          - ChatGLM 10

3、调用示例

@Configuration
public class ClientConfig {

    @Bean
    @Qualifier("Ernie")
    public ChatModel ernieClient() {
        
        ModelConfig modelConfig = new ModelConfig();
        // 模型名称,需跟设置的QPS数值的名称一致 (建议与官网名称一致)
        modelConfig.setModelName("Ernie");
        // 模型url
        modelConfig.setModelUrl("https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions");
        // 单独设置某个模型的access-token, 优先级高于全局access-token, 统一使用全局的话可以不设置
        modelConfig.setAccessToken("xx.xx.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx");
  
        ModelHeader modelHeader = new ModelHeader();
        // 一分钟内允许的最大请求次数
        modelHeader.set_X_Ratelimit_Limit_Requests(100);
        // 一分钟内允许的最大tokens消耗,包含输入tokens和输出tokens
        modelHeader.set_X_Ratelimit_Limit_Tokens(2000);
        // 达到RPM速率限制前,剩余可发送的请求数配额,如果配额用完,将会在0-60s后刷新
        modelHeader.set_X_Ratelimit_Remaining_Requests(1000);
        // 达到TPM速率限制前,剩余可消耗的tokens数配额,如果配额用完,将会在0-60s后刷新
        modelHeader.set_X_Ratelimit_Remaining_Tokens(5000);
  
        modelConfig.setModelHeader(modelHeader);
  
        return new ChatClient(modelConfig);
    }

}

@RestController
public class ChatController {

    // 要调用的模型的客户端(示例为文心)
    @Resource
    @Qualifier("Ernie")
    private ChatModel chatClient;
  
    /**
     * chatClient.chatStream(msg) 单轮流式对话
     * chatClient.chatStream(new ChatErnieRequest()) 单轮流式对话, 参数可调
     * chatClient.chatsStream(msg, msgId) 连续对话
     * chatClient.chatsStream(new ChatErnieRequest(), msgId) 连续对话, 参数可调
     */
  
    /**
     * 以下两种方式均可
     */
    // 连续对话,流式
    @GetMapping(value = "/stream/chats", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
    public Flux<String> chatSingleStream(@RequestParam String msg, @RequestParam String uid) {
        // 单次对话 chatClient.chatStream(msg)
        Flux<ChatResponse> responseFlux = chatClient.chatsStream(msg, uid);
        return responseFlux.map(ChatResponse::getResult);
    }
  
    // 连续对话,流式
    @GetMapping(value = "/stream/chats1", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
    public SseEmitter chats(@RequestParam String msg, @RequestParam String uid) {
        SseEmitter emitter = new SseEmitter();
        // 支持参数设置 ChatErnieRequest(Ernie系列模型)、ChatBaseRequest(其他模型)
        // 单次对话 chatClient.chatsStream(msg)
        chatClient.chatsStream(msg, uid).subscribe(response -> {
            try {
                emitter.send(SseEmitter.event().data(response.getResult()));
            } catch (IOException e) {
                throw new RuntimeException(e);
            }
        });
        return emitter;
    }

}

    /**
     * Prompt模板被百度改的有点迷,等稳定一下再做适配...
     */

Star History

Star History Chart

更新日志

v2.0.0-alpha1 // 始终上传失败...建议自己拉仓库install

  • JDK 8专版

v2.0.0 - bata4

  • 修复 修复定时任务导致的序列化问题

v2.0.0 - bata3

  • 修复 修复并发场景下导致的丢对话任务的问题
  • 修复 网络异常情况下导致的消息错乱问题
  • 新增 导入导出消息的api
  • 新增 消息存储与获取的api
  • 新增 Prompt与ImageClient
  • 优化 整体性能
  • 其余改动请查看commit.

v2.0.0 - bata

! 2.x 版本与 1.x 版本不兼容

  • 重构 SDK架构,大幅提升性能
  • 重构 客户端生成方式,支持自定义多模型,不再需要适配
  • 完善 普通chat接口现已可用

使用文档

点击跳转 => 使用文档

开源协议

MIT License

Copyright (c) 2023 GMerge

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for wenxin-starter

Similar Open Source Tools

For similar tasks

For similar jobs