can-ai-code
Self-evaluating interview for AI coders
Stars: 511
Can AI Code is a self-evaluating interview tool for AI coding models. It includes interview questions written by humans and tests taken by AI, inference scripts for common API providers and CUDA-enabled quantization runtimes, a Docker-based sandbox environment for validating untrusted Python and NodeJS code, and the ability to evaluate the impact of prompting techniques and sampling parameters on large language model (LLM) coding performance. Users can also assess LLM coding performance degradation due to quantization. The tool provides test suites for evaluating LLM coding performance, a webapp for exploring results, and comparison scripts for evaluations. It supports multiple interviewers for API and CUDA runtimes, with detailed instructions on running the tool in different environments. The repository structure includes folders for interviews, prompts, parameters, evaluation scripts, comparison scripts, and more.
README:
- Interview questions written by humans, test taken by AI
- Inference scripts for all common API providers and CUDA-enabled quantization runtimes
- Sandbox environment (Docker-based) for untrusted Python and NodeJS code validation
- Evaluate effects of prompting techniques and sampling parameters on LLM coding performance
- Evaluate LLM coding performance degradation due to quantization
9/04 Evaluate Command-R and Command-R Plus (API).
8/25 Evaluate NTQAI/Nxcode-CQ-7B-orpo (FP16), PHI 3.5 Mini and MoE (FP16), codefuse-ai/CodeFuse-StarCoder2-15B (FP16), internlm/AlchemistCoder-CL-7B (FP16), InternLM2.5 Chat 7B and 20B (FP16).
8/11 Evaluate Llama-3.1-Instruct 8B HQQ.
8/10 Evaluate Llama-3.1-Instruct 8B and 70B EXL2 and some low-bit GGUFs.
8/1 Evaluate Llama-3-Instruct 8B and 70B with AQLM-2bit. Very slow. 8B is badly damaged.
junior-v2
is a multi-language (Python, JavaScript) suite of 12 tests created for this project to test small LLM coding performance. This project provides all necessary components to execute this evaluation.
🚧 humaneval
is a Python-only suite of 164 tests created by OpenAI. This project provides template scripts to prepare and execute the humaneval interview, as well as result extraction scripts to help their evaluator. See https://github.com/openai/human-eval for more information.
All model answers and evaluation results are now included inside this repository! Install a recent release of streamlit pip install streamlit==1.23
then streamlit run app.py
or streamlit run compare-app.py
to run the above webapps locally.
🚧 humaneval/ development work is currently paused, there's other projects that are much further along.
See https://github.com/my-other-github-account/llm-humaneval-benchmarks and https://github.com/abacaj/code-eval for large lists of Humaneval LLM benchmark results.
-
junior-v2/*.yaml
- junior coder interview questions (stable) -
senior/*.yaml
- senior coder interview questions (WIP)
-
prompts/*.txt
- LLM prompt templates for the various models -
prepare.py
- Applies templates to question turning them into language- and model-specific prompts suitable for interview
See prompts/ for all prompts references in the leaderboard.
-
params/*.json
- Sampling hyper-parameter sets (used by all interview scripts) -
interview-*.py
- Interview scripts
See params/ for all params references in the leaderboard.
-
evaluate.py
- Run tests for the generated code in a sandbox and grades each answer -
app.py
- Streamlit webapp to explore results, see https://huggingface.co/spaces/mike-ravkine/can-ai-code-results
-
compare.py
- Performs comparisons between evaluations, optionally calling out to an LLM for analysis -
compare-app.py
- Streamlit webapp to explore comparisons, see https://huggingface.co/spaces/mike-ravkine/can-ai-code-compare -
compare/*.yaml
- Compare configurations -
compare/*.json
- Compare results
API Runtime | Script |
---|---|
LiteLLM (OpenAI, etc..) | interview-litellm.py |
OobaBooga/KoboldCpp | interview-oobabooga.py |
Huggingface Inference | interview-hfinference.py |
Gradio (HF Spaces) | interview-gradio.py |
Quantization Type | Script | Dependency |
---|---|---|
GGUF | interview-llamacpp.py |
llamacpp or ggml binary |
GPTQ (AutoGptQ) | interview-cuda.py |
auto-gptq==0.6.0 |
GPTQ (ExLlama) | interview-cuda.py |
exllama @ 3b013cd53c7d413cf99ca04c7c28dd5c95117c0d |
EXL2, GPTQ (ExLlama2) | interview-cuda.py |
exllamav2 @ 0.0.12 |
HQQ | interview-cuda.py |
hqq @ 0.1.1 |
AWQ, FP16 (vLLM) | interview-cuda.py |
vllm==0.3.0 |
CTranslate2 | interview-cuda.py |
ctranslate2>=3.16.0 |
bitsandbytes | interview-cuda.py |
bitsandbytes==0.41.3 |
FP16 (Transformers) | interview-cuda.py |
transformers==4.37.2 |
The recommended modal wrapper is interview_modal_cuda11.py
which builds a CUDA11.8 based container with all the above dependencies working. An interview_modal_cuda12.py
is also provided, but AutoGPTQ and CTranslate2 are not compatible.
Unfortunately the nature of Modal does not allow command-line selection of eitehr LLM model or runtime engine.
To select models, open the script and uncomment the .run_function(download...)
line of choice. Note that only one model can be selected at a time. To add a new model, implement a new download...
function.
To select runtime, open the script and uncomment one of the RUNTIME
options. Note that for transformers
you must also specify QUANT
.
A set of interview questions is a folder of .yaml files. Each Question is a top-level key:
SanityList:
Signature: "things()"
Input: "with no inputs"
Output: "a list with three values: the number 5, the string 'foobar', the capital city of Spain"
Fact: "the capital city of Spain is Madrid"
Description: "List function, see if the model can combine input facts with internal knowledge."
Checks:
input_name:
assert: "f.name"
eq: "things"
In this example SanityList
is the name of the interview question.
The first four fields are used by prepare.py
to create the interview:
-
Signature
is the desired function signature -
Input
describes the function inputs -
Output
describes the function outputs -
Fact
is optional and provides any context that is required to correctly perform the task
These 4 variables along with language
(either python
or javascript
) are used to expand templates in prompts/
.
The last two fields are used by evaluate.py
to judge the results:
-
Description
is a human-readable explanation of why this test is useful -
Checks
defines the expected behavior of the output.
Each check has a name, some assert
value (python code) and an expected eq
value.
The f object represents the sandbox view of the function. Static analysis is performed on the function signature to extract the f.name
and f.args
fields, while f.call
allows for function evaluation.
All scripts output automatically named .ndjson files to the results/
directory.
Each stage outputs a super-set of fields from the stage before it, so its possible to feed eval/interview back to interview (to re-run the questions) or back to eval (to re-run the eval).
results/prepare_{interview}_{languages}_{template}.ndjson
Fields:
- all Question fields (Signature, Input, Output, Fact, Description)
- name
- language
- prompt
results/interview_{interview}_{languages}_{template}_{templateout}_{params}_{model}_{timestamp}.ndjson
Fields:
- all
prepare
fields - model
- params
- answer
- runtime
results/eval_{interview}_{languages}_{template}_{templateout}_{params}_{model}_{timestamp}.ndjson
Fields:
- all
eval
fields - status
- passed
- total
- checks
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for can-ai-code
Similar Open Source Tools
can-ai-code
Can AI Code is a self-evaluating interview tool for AI coding models. It includes interview questions written by humans and tests taken by AI, inference scripts for common API providers and CUDA-enabled quantization runtimes, a Docker-based sandbox environment for validating untrusted Python and NodeJS code, and the ability to evaluate the impact of prompting techniques and sampling parameters on large language model (LLM) coding performance. Users can also assess LLM coding performance degradation due to quantization. The tool provides test suites for evaluating LLM coding performance, a webapp for exploring results, and comparison scripts for evaluations. It supports multiple interviewers for API and CUDA runtimes, with detailed instructions on running the tool in different environments. The repository structure includes folders for interviews, prompts, parameters, evaluation scripts, comparison scripts, and more.
detoxify
Detoxify is a library that provides trained models and code to predict toxic comments on 3 Jigsaw challenges: Toxic comment classification, Unintended Bias in Toxic comments, Multilingual toxic comment classification. It includes models like 'original', 'unbiased', and 'multilingual' trained on different datasets to detect toxicity and minimize bias. The library aims to help in stopping harmful content online by interpreting visual content in context. Users can fine-tune the models on carefully constructed datasets for research purposes or to aid content moderators in flagging out harmful content quicker. The library is built to be user-friendly and straightforward to use.
LEADS
LEADS is a lightweight embedded assisted driving system designed to simplify the development of instrumentation, control, and analysis systems for racing cars. It is written in Python and C/C++ with impressive performance. The system is customizable and provides abstract layers for component rearrangement. It supports hardware components like Raspberry Pi and Arduino, and can adapt to various hardware types. LEADS offers a modular structure with a focus on flexibility and lightweight design. It includes robust safety features, modern GUI design with dark mode support, high performance on different platforms, and powerful ESC systems for traction control and braking. The system also supports real-time data sharing, live video streaming, and AI-enhanced data analysis for driver training. LEADS VeC Remote Analyst enables transparency between the driver and pit crew, allowing real-time data sharing and analysis. The system is designed to be user-friendly, adaptable, and efficient for racing car development.
Construction-Hazard-Detection
Construction-Hazard-Detection is an AI-driven tool focused on improving safety at construction sites by utilizing the YOLOv8 model for object detection. The system identifies potential hazards like overhead heavy loads and steel pipes, providing real-time analysis and warnings. Users can configure the system via a YAML file and run it using Docker. The primary dataset used for training is the Construction Site Safety Image Dataset enriched with additional annotations. The system logs are accessible within the Docker container for debugging, and notifications are sent through the LINE messaging API when hazards are detected.
datadreamer
DataDreamer is an advanced toolkit designed to facilitate the development of edge AI models by enabling synthetic data generation, knowledge extraction from pre-trained models, and creation of efficient and potent models. It eliminates the need for extensive datasets by generating synthetic datasets, leverages latent knowledge from pre-trained models, and focuses on creating compact models suitable for integration into any device and performance for specialized tasks. The toolkit offers features like prompt generation, image generation, dataset annotation, and tools for training small-scale neural networks for edge deployment. It provides hardware requirements, usage instructions, available models, and limitations to consider while using the library.
chatgpt-cli
ChatGPT CLI provides a powerful command-line interface for seamless interaction with ChatGPT models via OpenAI and Azure. It features streaming capabilities, extensive configuration options, and supports various modes like streaming, query, and interactive mode. Users can manage thread-based context, sliding window history, and provide custom context from any source. The CLI also offers model and thread listing, advanced configuration options, and supports GPT-4, GPT-3.5-turbo, and Perplexity's models. Installation is available via Homebrew or direct download, and users can configure settings through default values, a config.yaml file, or environment variables.
paxml
Pax is a framework to configure and run machine learning experiments on top of Jax.
stable-diffusion-webui
Stable Diffusion WebUI Docker Image allows users to run Automatic1111 WebUI in a docker container locally or in the cloud. The images do not bundle models or third-party configurations, requiring users to use a provisioning script for container configuration. It supports NVIDIA CUDA, AMD ROCm, and CPU platforms, with additional environment variables for customization and pre-configured templates for Vast.ai and Runpod.io. The service is password protected by default, with options for version pinning, startup flags, and service management using supervisorctl.
comfyui
ComfyUI is a highly-configurable, cloud-first AI-Dock container that allows users to run ComfyUI without bundled models or third-party configurations. Users can configure the container using provisioning scripts. The Docker image supports NVIDIA CUDA, AMD ROCm, and CPU platforms, with version tags for different configurations. Additional environment variables and Python environments are provided for customization. ComfyUI service runs on port 8188 and can be managed using supervisorctl. The tool also includes an API wrapper service and pre-configured templates for Vast.ai. The author may receive compensation for services linked in the documentation.
upgini
Upgini is an intelligent data search engine with a Python library that helps users find and add relevant features to their ML pipeline from various public, community, and premium external data sources. It automates the optimization of connected data sources by generating an optimal set of machine learning features using large language models, GraphNNs, and recurrent neural networks. The tool aims to simplify feature search and enrichment for external data to make it a standard approach in machine learning pipelines. It democratizes access to data sources for the data science community.
magentic
Easily integrate Large Language Models into your Python code. Simply use the `@prompt` and `@chatprompt` decorators to create functions that return structured output from the LLM. Mix LLM queries and function calling with regular Python code to create complex logic.
mistral-inference
Mistral Inference repository contains minimal code to run 7B, 8x7B, and 8x22B models. It provides model download links, installation instructions, and usage guidelines for running models via CLI or Python. The repository also includes information on guardrailing, model platforms, deployment, and references. Users can interact with models through commands like mistral-demo, mistral-chat, and mistral-common. Mistral AI models support function calling and chat interactions for tasks like testing models, chatting with models, and using Codestral as a coding assistant. The repository offers detailed documentation and links to blogs for further information.
generative-fusion-decoding
Generative Fusion Decoding (GFD) is a novel shallow fusion framework that integrates Large Language Models (LLMs) into multi-modal text recognition systems such as automatic speech recognition (ASR) and optical character recognition (OCR). GFD operates across mismatched token spaces of different models by mapping text token space to byte token space, enabling seamless fusion during the decoding process. It simplifies the complexity of aligning different model sample spaces, allows LLMs to correct errors in tandem with the recognition model, increases robustness in long-form speech recognition, and enables fusing recognition models deficient in Chinese text recognition with LLMs extensively trained on Chinese. GFD significantly improves performance in ASR and OCR tasks, offering a unified solution for leveraging existing pre-trained models through step-by-step fusion.
mergekit
Mergekit is a toolkit for merging pre-trained language models. It uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention.
mflux
MFLUX is a line-by-line port of the FLUX implementation in the Huggingface Diffusers library to Apple MLX. It aims to run powerful FLUX models from Black Forest Labs locally on Mac machines. The codebase is minimal and explicit, prioritizing readability over generality and performance. Models are implemented from scratch in MLX, with tokenizers from the Huggingface Transformers library. Dependencies include Numpy and Pillow for image post-processing. Installation can be done using `uv tool` or classic virtual environment setup. Command-line arguments allow for image generation with specified models, prompts, and optional parameters. Quantization options for speed and memory reduction are available. LoRA adapters can be loaded for fine-tuning image generation. Controlnet support provides more control over image generation with reference images. Current limitations include generating images one by one, lack of support for negative prompts, and some LoRA adapters not working.
code2prompt
Code2Prompt is a powerful command-line tool that generates comprehensive prompts from codebases, designed to streamline interactions between developers and Large Language Models (LLMs) for code analysis, documentation, and improvement tasks. It bridges the gap between codebases and LLMs by converting projects into AI-friendly prompts, enabling users to leverage AI for various software development tasks. The tool offers features like holistic codebase representation, intelligent source tree generation, customizable prompt templates, smart token management, Gitignore integration, flexible file handling, clipboard-ready output, multiple output options, and enhanced code readability.
For similar tasks
can-ai-code
Can AI Code is a self-evaluating interview tool for AI coding models. It includes interview questions written by humans and tests taken by AI, inference scripts for common API providers and CUDA-enabled quantization runtimes, a Docker-based sandbox environment for validating untrusted Python and NodeJS code, and the ability to evaluate the impact of prompting techniques and sampling parameters on large language model (LLM) coding performance. Users can also assess LLM coding performance degradation due to quantization. The tool provides test suites for evaluating LLM coding performance, a webapp for exploring results, and comparison scripts for evaluations. It supports multiple interviewers for API and CUDA runtimes, with detailed instructions on running the tool in different environments. The repository structure includes folders for interviews, prompts, parameters, evaluation scripts, comparison scripts, and more.
For similar jobs
weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.
LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.
VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.
kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.
PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.
tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.
spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.
Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.