KsanaLLM

KsanaLLM

None

Stars: 264

Visit
 screenshot

KsanaLLM is a high-performance engine for LLM inference and serving. It utilizes optimized CUDA kernels for high performance, efficient memory management, and detailed optimization for dynamic batching. The tool offers flexibility with seamless integration with popular Hugging Face models, support for multiple weight formats, and high-throughput serving with various decoding algorithms. It enables multi-GPU tensor parallelism, streaming outputs, and an OpenAI-compatible API server. KsanaLLM supports NVIDIA GPUs and Huawei Ascend NPU, and seamlessly integrates with verified Hugging Face models like LLaMA, Baichuan, and Qwen. Users can create a docker container, clone the source code, compile for Nvidia or Huawei Ascend NPU, run the tool, and distribute it as a wheel package. Optional features include a model weight map JSON file for models with different weight names.

README:

KsanaLLM

English | 中文

About

KsanaLLM is a high performance and easy-to-use engine for LLM inference and serving.

High Performance and Throughput:

  • Utilizes optimized CUDA kernels, including high performance kernels from vLLM, TensorRT-LLM, FastTransformer
  • Efficient management of attention key and value memory with PagedAttention
  • Detailed optimization of task-scheduling and memory-uitlization for dynamic batching
  • (Experimental) Prefix caching support
  • Sufficient testing has been conducted on GPU cards such as A10, A100, L40, etc

Flexibility and easy to use:

  • Seamless integration with popular Hugging Face models, and support multiple weight formats, such as pytorch and SafeTensors

  • High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more

  • Enables multi-gpu tensor parallelism

  • Streaming outputs

  • OpenAI-compatible API server

  • Support NVIDIA GPUs and Huawei Ascend NPU

KsanaLLM seamlessly supports many Hugging Face models, including the below models that have been verified:

  • LLaMA 7B/13B & LLaMA-2 7B/13B & LLaMA3 8B/70B
  • Baichuan1 7B/13B & Baichuan2 7B/13B
  • Qwen 7B/14B & QWen1.5 7B/14B/72B/110B
  • Yi1.5-34B

Supported Hardware

  • Nvidia GPUs: A10, A100, L40, L20
  • Huawei Ascend NPUs: 910B2C

Usage

1. Create Docker container and runtime environment

1.1 For Nvidia GPU

# need install nvidia-docker from https://github.com/NVIDIA/nvidia-container-toolkit
sudo nvidia-docker run -itd --network host --privileged \
    nvcr.io/nvidia/pytorch:24.03-py3 bash
pip install -r requirements.txt
# for download huggingface model
apt update && apt install git-lfs -y

1.2 For Huawei Ascend NPU

Please install Huawei Ascend NPU driver and CANN: driver download link

Recommend version: CANN 8.0RC2

Only Support Ascend NPU + X86 CPU

cd docker
docker build -f Dockerfile.npu -t ksana-npu .
docker run \
    -u root \
    -itd --privileged \
    --shm-size=50g \
    --network host \
    --cap-add=SYS_ADMIN \
    --cap-add=SYS_PTRACE \
    --security-opt seccomp:unconfined $(find /dev/ -regex ".*/davinci$" | awk '{print " --device "$0}') \
    --device=/dev/devmm_svm \
    --device=/dev/hisi_hdc \
    -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \
    -v /usr/local/sbin/:/usr/local/sbin/ \
    -v /var/log/npu/conf/slog/slog.conf:/var/log/npu/conf/slog/slog.conf \
    -v /var/log/npu/slog/:/var/log/npu/slog \
    -v /var/log/npu/profiling/:/var/log/npu/profiling \
    -v /var/log/npu/dump/:/var/log/npu/dump \
    -v /var/log/npu/:/usr/slog \
    -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
    -v /etc/ascend_install.info:/etc/ascend_install.info \
    ksana-npu bash

# install Ascend-cann-toolkit, Ascend-cann-nnal from https://www.hiascend.com/document/detail/zh/canncommercial/80RC2/softwareinst/instg/instg_0000.html?Mode=PmIns&OS=Ubuntu&Software=cannToolKit
# download torch_npu-2.1.0.post6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl from https://www.hiascend.com/document/detail/zh/canncommercial/80RC2/softwareinst/instg/instg_0000.html?Mode=PmIns&OS=Ubuntu&Software=cannToolKit
pip3 install torch==2.1.0+cpu --index-url https://download.pytorch.org/whl/cpu
pip install torch_npu-2.1.0.post6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
pip install -r requirements.txt

2. Clone source code

git clone --recurse-submodules https://github.com/pcg-mlp/KsanaLLM
export GIT_PROJECT_REPO_ROOT=`pwd`/KsanaLLM

3. Compile

cd ${GIT_PROJECT_REPO_ROOT}
mkdir build && cd build

3.1 For Nvidia

# SM for A10 is 86, change it when using other gpus.
# refer to: https://developer.nvidia.cn/cuda-gpus
cmake -DSM=86 -DWITH_TESTING=ON .. && make -j32

3.2 For Huawei Ascend NPU

cmake -DWITH_TESTING=ON -DWITH_CUDA=OFF -DWITH_ACL=ON .. && make -j32

4. Run

cd ${GIT_PROJECT_REPO_ROOT}/src/ksana_llm/python
ln -s ${GIT_PROJECT_REPO_ROOT}/build/lib .

# download huggingface model for example:
# Note: Make sure git-lfs is installed.
git clone https://huggingface.co/NousResearch/Llama-2-7b-hf

# change the model_dir in ${GIT_PROJECT_REPO_ROOT}/examples/ksana_llm2-7b.yaml if needed

# set environment variable `KLLM_LOG_LEVEL=DEBUG` before run to get more log info
# the serving log locate in log/ksana_llm.log

# ${GIT_PROJECT_REPO_ROOT}/examples/ksana_llm2-7b.yaml's tensor_para_size equal the GPUs/NPUs number
export CUDA_VISIBLE_DEVICES=xx

# launch server
python serving_server.py \
    --config_file ${GIT_PROJECT_REPO_ROOT}/examples/ksana_llm2-7b.yaml \
    --port 8080

Inference test with one shot conversation

# open another session
cd ${GIT_PROJECT_REPO_ROOT}/src/ksana_llm/python
python serving_generate_client.py --port 8080

Inference test with forward(Single round inference without generate sampling)

python serving_forward_client.py --port 8080

5. Distribute

cd ${GIT_PROJECT_REPO_ROOT}

# for distribute wheel
python setup.py bdist_wheel
# install wheel
pip install dist/ksana_llm-0.1-*-linux_x86_64.whl

# check install success
pip show -f ksana_llm
python -c "import ksana_llm"

6. Optional

6.1 Model Weight Map

You can include an optional weight map JSON file for models that share the same structure as the Llama model but have different weight names.

For more detailed information, please refer to the following link: Optional Weight Map Guide

6.2 Plugin

Custom plugins can perform some special pre-process and post-processing. You need to place ksana_plugin.py in the model directory. Example

6.3 KV Cache Scaling Factors

When enabling FP8 E4M3 KV Cache quantization, it is necessary to provide scaling factors to ensure inference accuracy.

For more detailed information, please refer to the following link: Optional KV Scale Guide

7. Contact Us

WeChat Group

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for KsanaLLM

Similar Open Source Tools

For similar tasks

For similar jobs