
aio-pika
AMQP 0.9 client designed for asyncio and humans.
Stars: 1181

Aio-pika is a wrapper around aiormq for asyncio and humans. It provides a completely asynchronous API, object-oriented API, transparent auto-reconnects with complete state recovery, Python 3.7+ compatibility, transparent publisher confirms support, transactions support, and complete type-hints coverage.
README:
.. _documentation: https://aio-pika.readthedocs.org/ .. _adopted official RabbitMQ tutorial: https://aio-pika.readthedocs.io/en/latest/rabbitmq-tutorial/1-introduction.html
.. image:: https://readthedocs.org/projects/aio-pika/badge/?version=latest :target: https://aio-pika.readthedocs.org/ :alt: ReadTheDocs
.. image:: https://coveralls.io/repos/github/mosquito/aio-pika/badge.svg?branch=master :target: https://coveralls.io/github/mosquito/aio-pika :alt: Coveralls
.. image:: https://github.com/mosquito/aio-pika/workflows/tests/badge.svg :target: https://github.com/mosquito/aio-pika/actions?query=workflow%3Atests :alt: Github Actions
.. image:: https://img.shields.io/pypi/v/aio-pika.svg :target: https://pypi.python.org/pypi/aio-pika/ :alt: Latest Version
.. image:: https://img.shields.io/pypi/wheel/aio-pika.svg :target: https://pypi.python.org/pypi/aio-pika/
.. image:: https://img.shields.io/pypi/pyversions/aio-pika.svg :target: https://pypi.python.org/pypi/aio-pika/
.. image:: https://img.shields.io/pypi/l/aio-pika.svg :target: https://pypi.python.org/pypi/aio-pika/
A wrapper around aiormq
_ for asyncio and humans.
Check out the examples and the tutorial in the documentation
_.
If you are a newcomer to RabbitMQ, please start with the adopted official RabbitMQ tutorial
_.
.. _aiormq: http://github.com/mosquito/aiormq/
.. note::
Since version 5.0.0
this library doesn't use pika
as AMQP connector.
Versions below 5.0.0
contains or requires pika
's source code.
.. note:: The version 7.0.0 has breaking API changes, see CHANGELOG.md for migration hints.
- Completely asynchronous API.
- Object oriented API.
- Transparent auto-reconnects with complete state recovery with
connect_robust
(e.g. declared queues or exchanges, consuming state and bindings). - Python 3.7+ compatible.
- For python 3.5 users, aio-pika is available via
aio-pika<7
. - Transparent
publisher confirms
_ support. -
Transactions
_ support. - Complete type-hints coverage.
.. _Transactions: https://www.rabbitmq.com/semantics.html .. _publisher confirms: https://www.rabbitmq.com/confirms.html
.. code-block:: shell
pip install aio-pika
Simple consumer:
.. code-block:: python
import asyncio
import aio_pika
import aio_pika.abc
async def main(loop):
# Connecting with the given parameters is also possible.
# aio_pika.connect_robust(host="host", login="login", password="password")
# You can only choose one option to create a connection, url or kw-based params.
connection = await aio_pika.connect_robust(
"amqp://guest:[email protected]/", loop=loop
)
async with connection:
queue_name = "test_queue"
# Creating channel
channel: aio_pika.abc.AbstractChannel = await connection.channel()
# Declaring queue
queue: aio_pika.abc.AbstractQueue = await channel.declare_queue(
queue_name,
auto_delete=True
)
async with queue.iterator() as queue_iter:
# Cancel consuming after __aexit__
async for message in queue_iter:
async with message.process():
print(message.body)
if queue.name in message.body.decode():
break
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))
loop.close()
Simple publisher:
.. code-block:: python
import asyncio
import aio_pika
import aio_pika.abc
async def main(loop):
# Explicit type annotation
connection: aio_pika.RobustConnection = await aio_pika.connect_robust(
"amqp://guest:[email protected]/", loop=loop
)
routing_key = "test_queue"
channel: aio_pika.abc.AbstractChannel = await connection.channel()
await channel.default_exchange.publish(
aio_pika.Message(
body='Hello {}'.format(routing_key).encode()
),
routing_key=routing_key
)
await connection.close()
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))
loop.close()
Get single message example:
.. code-block:: python
import asyncio
from aio_pika import connect_robust, Message
async def main(loop):
connection = await connect_robust(
"amqp://guest:[email protected]/",
loop=loop
)
queue_name = "test_queue"
routing_key = "test_queue"
# Creating channel
channel = await connection.channel()
# Declaring exchange
exchange = await channel.declare_exchange('direct', auto_delete=True)
# Declaring queue
queue = await channel.declare_queue(queue_name, auto_delete=True)
# Binding queue
await queue.bind(exchange, routing_key)
await exchange.publish(
Message(
bytes('Hello', 'utf-8'),
content_type='text/plain',
headers={'foo': 'bar'}
),
routing_key
)
# Receiving message
incoming_message = await queue.get(timeout=5)
# Confirm message
await incoming_message.ack()
await queue.unbind(exchange, routing_key)
await queue.delete()
await connection.close()
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))
There are more examples and the RabbitMQ tutorial in the documentation
_.
aiormq
is a pure python AMQP client library. It is under the hood of aio-pika and might to be used when you really loving works with the protocol low level.
Following examples demonstrates the user API.
Simple consumer:
.. code-block:: python
import asyncio
import aiormq
async def on_message(message):
"""
on_message doesn't necessarily have to be defined as async.
Here it is to show that it's possible.
"""
print(f" [x] Received message {message!r}")
print(f"Message body is: {message.body!r}")
print("Before sleep!")
await asyncio.sleep(5) # Represents async I/O operations
print("After sleep!")
async def main():
# Perform connection
connection = await aiormq.connect("amqp://guest:guest@localhost/")
# Creating a channel
channel = await connection.channel()
# Declaring queue
declare_ok = await channel.queue_declare('helo')
consume_ok = await channel.basic_consume(
declare_ok.queue, on_message, no_ack=True
)
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
loop.run_forever()
Simple publisher:
.. code-block:: python
import asyncio
from typing import Optional
import aiormq
from aiormq.abc import DeliveredMessage
MESSAGE: Optional[DeliveredMessage] = None
async def main():
global MESSAGE
body = b'Hello World!'
# Perform connection
connection = await aiormq.connect("amqp://guest:guest@localhost//")
# Creating a channel
channel = await connection.channel()
declare_ok = await channel.queue_declare("hello", auto_delete=True)
# Sending the message
await channel.basic_publish(body, routing_key='hello')
print(f" [x] Sent {body}")
MESSAGE = await channel.basic_get(declare_ok.queue)
print(f" [x] Received message from {declare_ok.queue!r}")
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
assert MESSAGE is not None
assert MESSAGE.routing_key == "hello"
assert MESSAGE.body == b'Hello World!'
PATIO is an acronym for Python Asynchronous Tasks for AsyncIO - an easily extensible library, for distributed task execution, like celery, only targeting asyncio as the main design approach.
patio-rabbitmq provides you with the ability to use RPC over RabbitMQ services with extremely simple implementation:
.. code-block:: python
from patio import Registry, ThreadPoolExecutor from patio_rabbitmq import RabbitMQBroker
rpc = Registry(project="patio-rabbitmq", auto_naming=False)
@rpc("sum") def sum(*args): return sum(args)
async def main(): async with ThreadPoolExecutor(rpc, max_workers=16) as executor: async with RabbitMQBroker( executor, amqp_url="amqp://guest:guest@localhost/", ) as broker: await broker.join()
And the caller side might be written like this:
.. code-block:: python
import asyncio
from patio import NullExecutor, Registry
from patio_rabbitmq import RabbitMQBroker
async def main():
async with NullExecutor(Registry(project="patio-rabbitmq")) as executor:
async with RabbitMQBroker(
executor, amqp_url="amqp://guest:guest@localhost/",
) as broker:
print(await asyncio.gather(
*[
broker.call("mul", i, i, timeout=1) for i in range(10)
]
))
FastStream is a powerful and easy-to-use Python library for building asynchronous services that interact with event streams..
If you need no deep dive into RabbitMQ details, you can use more high-level FastStream interfaces:
.. code-block:: python
from faststream import FastStream from faststream.rabbit import RabbitBroker
broker = RabbitBroker("amqp://guest:guest@localhost:5672/") app = FastStream(broker)
@broker.subscriber("user") async def user_created(user_id: int): assert isinstance(user_id, int) return f"user-{user_id}: created"
@app.after_startup async def pub_smth(): assert ( await broker.publish(1, "user", rpc=True) ) == "user-1: created"
Also, FastStream validates messages by pydantic, generates your project AsyncAPI spec, supports In-Memory testing, RPC calls, and more.
In fact, it is a high-level wrapper on top of aio-pika, so you can use both of these libraries' advantages at the same time.
Socket.IO
_ is a transport protocol that enables real-time bidirectional event-based communication between clients (typically, though not always, web browsers) and a server. This package provides Python implementations of both, each with standard and asyncio variants.
Also this package is suitable for building messaging services over RabbitMQ via aio-pika adapter:
.. code-block:: python
import socketio from aiohttp import web
sio = socketio.AsyncServer(client_manager=socketio.AsyncAioPikaManager()) app = web.Application() sio.attach(app)
@sio.event async def chat_message(sid, data): print("message ", data)
if name == 'main': web.run_app(app)
And a client is able to call chat_message
the following way:
.. code-block:: python
import asyncio import socketio
sio = socketio.AsyncClient()
async def main(): await sio.connect('http://localhost:8080') await sio.emit('chat_message', {'response': 'my response'})
if name == 'main': asyncio.run(main())
Taskiq is an asynchronous distributed task queue for python. The project takes inspiration from big projects such as Celery and Dramatiq. But taskiq can send and run both the sync and async functions.
The library provides you with aio-pika broker for running tasks too.
.. code-block:: python
from taskiq_aio_pika import AioPikaBroker
broker = AioPikaBroker()
@broker.task async def test() -> None: print("nothing")
async def main(): await broker.startup() await test.kiq()
With over 25 million downloads, Rasa Open Source is the most popular open source framework for building chat and voice-based AI assistants.
With Rasa, you can build contextual assistants on:
- Facebook Messenger
- Slack
- Google Hangouts
- Webex Teams
- Microsoft Bot Framework
- Rocket.Chat
- Mattermost
- Telegram
- Twilio
Your own custom conversational channels or voice assistants as:
- Alexa Skills
- Google Home Actions
Rasa helps you build contextual assistants capable of having layered conversations with lots of back-and-forth. In order for a human to have a meaningful exchange with a contextual assistant, the assistant needs to be able to use context to build on things that were previously discussed – Rasa enables you to build assistants that can do this in a scalable way.
And it also uses aio-pika to interact with RabbitMQ deep inside!
This software follows Semantic Versioning
_
Setting up development environment
Clone the project:
.. code-block:: shell
git clone https://github.com/mosquito/aio-pika.git
cd aio-pika
Create a new virtualenv for aio-pika
_:
.. code-block:: shell
python3 -m venv env
source env/bin/activate
Install all requirements for aio-pika
_:
.. code-block:: shell
pip install -e '.[develop]'
Running Tests
NOTE: In order to run the tests locally you need to run a RabbitMQ instance with default user/password (guest/guest) and port (5672).
The Makefile provides a command to run an appropriate RabbitMQ Docker image:
.. code-block:: bash
make rabbitmq
To test just run:
.. code-block:: bash
make test
Editing Documentation
To iterate quickly on the documentation live in your browser, try:
.. code-block:: bash
nox -s docs -- serve
Creating Pull Requests
Please feel free to create pull requests, but you should describe your use cases and add some examples.
Changes should follow a few simple rules:
- When your changes break the public API, you must increase the major version.
- When your changes are safe for public API (e.g. added an argument with default value)
- You have to add test cases (see
tests/
folder) - You must add docstrings
- Feel free to add yourself to
"thank's to" section
_
.. _"thank's to" section: https://github.com/mosquito/aio-pika/blob/master/docs/source/index.rst#thanks-for-contributing .. _Semantic Versioning: http://semver.org/ .. _aio-pika: https://github.com/mosquito/aio-pika/ .. _faststream: https://github.com/airtai/faststream .. _patio: https://github.com/patio-python/patio .. _patio-rabbitmq: https://github.com/patio-python/patio-rabbitmq .. _Socket.IO: https://socket.io/ .. _python-socketio: https://python-socketio.readthedocs.io/en/latest/intro.html .. _taskiq: https://github.com/taskiq-python/taskiq .. _taskiq-aio-pika: https://github.com/taskiq-python/taskiq-aio-pika .. _Rasa: https://rasa.com/docs/rasa/
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for aio-pika
Similar Open Source Tools

aio-pika
Aio-pika is a wrapper around aiormq for asyncio and humans. It provides a completely asynchronous API, object-oriented API, transparent auto-reconnects with complete state recovery, Python 3.7+ compatibility, transparent publisher confirms support, transactions support, and complete type-hints coverage.

acte
Acte is a framework designed to build GUI-like tools for AI Agents. It aims to address the issues of cognitive load and freedom degrees when interacting with multiple APIs in complex scenarios. By providing a graphical user interface (GUI) for Agents, Acte helps reduce cognitive load and constraints interaction, similar to how humans interact with computers through GUIs. The tool offers APIs for starting new sessions, executing actions, and displaying screens, accessible via HTTP requests or the SessionManager class.

aiotdlib
aiotdlib is a Python asyncio Telegram client based on TDLib. It provides automatic generation of types and functions from tl schema, validation, good IDE type hinting, and high-level API methods for simpler work with tdlib. The package includes prebuilt TDLib binaries for macOS (arm64) and Debian Bullseye (amd64). Users can use their own binary by passing `library_path` argument to `Client` class constructor. Compatibility with other versions of the library is not guaranteed. The tool requires Python 3.9+ and users need to get their `api_id` and `api_hash` from Telegram docs for installation and usage.

funcchain
Funcchain is a Python library that allows you to easily write cognitive systems by leveraging Pydantic models as output schemas and LangChain in the backend. It provides a seamless integration of LLMs into your apps, utilizing OpenAI Functions or LlamaCpp grammars (json-schema-mode) for efficient structured output. Funcchain compiles the Funcchain syntax into LangChain runnables, enabling you to invoke, stream, or batch process your pipelines effortlessly.

polyfire-js
Polyfire is an all-in-one managed backend for AI apps that allows users to build AI apps directly from the frontend, eliminating the need for a separate backend. It simplifies the process by providing most backend services in just a few lines of code. With Polyfire, users can easily create chatbots, transcribe audio files to text, generate simple text, create a long-term memory, and generate images with Dall-E. The tool also offers starter guides and tutorials to help users get started quickly and efficiently.

pocketgroq
PocketGroq is a tool that provides advanced functionalities for text generation, web scraping, web search, and AI response evaluation. It includes features like an Autonomous Agent for answering questions, web crawling and scraping capabilities, enhanced web search functionality, and flexible integration with Ollama server. Users can customize the agent's behavior, evaluate responses using AI, and utilize various methods for text generation, conversation management, and Chain of Thought reasoning. The tool offers comprehensive methods for different tasks, such as initializing RAG, error handling, and tool management. PocketGroq is designed to enhance development processes and enable the creation of AI-powered applications with ease.

daydreams
Daydreams is a generative agent library designed for playing onchain games by injecting context. It is chain agnostic and allows users to perform onchain tasks, including playing any onchain game. The tool is lightweight and powerful, enabling users to define game context, register actions, set goals, monitor progress, and integrate with external agents. Daydreams aims to be 'lite' and 'composable', dynamically generating code needed to play games. It is currently in pre-alpha stage, seeking feedback and collaboration for further development.

solana-agent-kit
Solana Agent Kit is an open-source toolkit designed for connecting AI agents to Solana protocols. It enables agents, regardless of the model used, to autonomously perform various Solana actions such as trading tokens, launching new tokens, lending assets, sending compressed airdrops, executing blinks, and more. The toolkit integrates core blockchain features like token operations, NFT management via Metaplex, DeFi integration, Solana blinks, AI integration features with LangChain, autonomous modes, and AI tools. It provides ready-to-use tools for blockchain operations, supports autonomous agent actions, and offers features like memory management, real-time feedback, and error handling. Solana Agent Kit facilitates tasks such as deploying tokens, creating NFT collections, swapping tokens, lending tokens, staking SOL, and sending SPL token airdrops via ZK compression. It also includes functionalities for fetching price data from Pyth and relies on key Solana and Metaplex libraries for its operations.

client-python
The Mistral Python Client is a tool inspired by cohere-python that allows users to interact with the Mistral AI API. It provides functionalities to access and utilize the AI capabilities offered by Mistral. Users can easily install the client using pip and manage dependencies using poetry. The client includes examples demonstrating how to use the API for various tasks, such as chat interactions. To get started, users need to obtain a Mistral API Key and set it as an environment variable. Overall, the Mistral Python Client simplifies the integration of Mistral AI services into Python applications.

mcphub.nvim
MCPHub.nvim is a powerful Neovim plugin that integrates MCP (Model Context Protocol) servers into your workflow. It offers a centralized config file for managing servers and tools, with an intuitive UI for testing resources. Ideal for LLM integration, it provides programmatic API access and interactive testing through the `:MCPHub` command.

obsei
Obsei is an open-source, low-code, AI powered automation tool that consists of an Observer to collect unstructured data from various sources, an Analyzer to analyze the collected data with various AI tasks, and an Informer to send analyzed data to various destinations. The tool is suitable for scheduled jobs or serverless applications as all Observers can store their state in databases. Obsei is still in alpha stage, so caution is advised when using it in production. The tool can be used for social listening, alerting/notification, automatic customer issue creation, extraction of deeper insights from feedbacks, market research, dataset creation for various AI tasks, and more based on creativity.

MarkLLM
MarkLLM is an open-source toolkit designed for watermarking technologies within large language models (LLMs). It simplifies access, understanding, and assessment of watermarking technologies, supporting various algorithms, visualization tools, and evaluation modules. The toolkit aids researchers and the community in ensuring the authenticity and origin of machine-generated text.

educhain
Educhain is a powerful Python package that leverages Generative AI to create engaging and personalized educational content. It enables users to generate multiple-choice questions, create lesson plans, and support various LLM models. Users can export questions to JSON, PDF, and CSV formats, customize prompt templates, and generate questions from text, PDF, URL files, youtube videos, and images. Educhain outperforms traditional methods in content generation speed and quality. It offers advanced configuration options and has a roadmap for future enhancements, including integration with popular Learning Management Systems and a mobile app for content generation on-the-go.

simba
Simba is an open source, portable Knowledge Management System (KMS) designed to seamlessly integrate with any Retrieval-Augmented Generation (RAG) system. It features a modern UI and modular architecture, allowing developers to focus on building advanced AI solutions without the complexities of knowledge management. Simba offers a user-friendly interface to visualize and modify document chunks, supports various vector stores and embedding models, and simplifies knowledge management for developers. It is community-driven, extensible, and aims to enhance AI functionality by providing a seamless integration with RAG-based systems.

llm-sandbox
LLM Sandbox is a lightweight and portable sandbox environment designed to securely execute large language model (LLM) generated code in a safe and isolated manner using Docker containers. It provides an easy-to-use interface for setting up, managing, and executing code in a controlled Docker environment, simplifying the process of running code generated by LLMs. The tool supports multiple programming languages, offers flexibility with predefined Docker images or custom Dockerfiles, and allows scalability with support for Kubernetes and remote Docker hosts.

clarifai-python
The Clarifai Python SDK offers a comprehensive set of tools to integrate Clarifai's AI platform to leverage computer vision capabilities like classification , detection ,segementation and natural language capabilities like classification , summarisation , generation , Q&A ,etc into your applications. With just a few lines of code, you can leverage cutting-edge artificial intelligence to unlock valuable insights from visual and textual content.
For similar tasks

aio-pika
Aio-pika is a wrapper around aiormq for asyncio and humans. It provides a completely asynchronous API, object-oriented API, transparent auto-reconnects with complete state recovery, Python 3.7+ compatibility, transparent publisher confirms support, transactions support, and complete type-hints coverage.

sdnext
SD.Next is an Image Diffusion implementation with advanced features. It offers multiple UI options, diffusion models, and built-in controls for text, image, batch, and video processing. The tool is multiplatform, supporting Windows, Linux, MacOS, nVidia, AMD, IntelArc/IPEX, DirectML, OpenVINO, ONNX+Olive, and ZLUDA. It provides optimized processing with the latest torch developments, including model compile, quantize, and compress functionalities. SD.Next also features Interrogate/Captioning with various models, queue management, automatic updates, and mobile compatibility.

venom
Venom is a high-performance system developed with JavaScript to create a bot for WhatsApp, support for creating any interaction, such as customer service, media sending, sentence recognition based on artificial intelligence and all types of design architecture for WhatsApp.

IBRAHIM-AI-10.10
BMW MD is a simple WhatsApp user BOT created by Ibrahim Tech. It allows users to scan pairing codes or QR codes to connect to WhatsApp and deploy the bot on Heroku. The bot can be used to perform various tasks such as sending messages, receiving messages, and managing contacts. It is released under the MIT License and contributions are welcome.

wppconnect
WPPConnect is an open source project developed by the JavaScript community with the aim of exporting functions from WhatsApp Web to the node, which can be used to support the creation of any interaction, such as customer service, media sending, intelligence recognition based on phrases artificial and many other things.

AIS-catcher-for-Android
AIS-catcher for Android is a multi-platform AIS receiver app that transforms your Android device into a dual channel AIS receiver. It directly accesses a Software Defined Radio USB device to pick up AIS signals from nearby vessels, visualizing them on a built-in map or sending messages via UDP to plotting apps. The app requires a RTL-SDR dongle or an AirSpy device, a simple antenna, an Android device with USB connector, and an OTG cable. It is designed for research and educational purposes under the GPL license, with no warranty. Users are responsible for prudent use and compliance with local regulations. The app is not intended for navigation or safety purposes.

aiomqtt
aiomqtt is an idiomatic asyncio MQTT client that allows users to interact with MQTT brokers using asyncio in Python. It eliminates the need for callbacks and return codes, providing a more streamlined experience. The tool supports MQTT versions 5.0, 3.1.1, and 3.1, and offers graceful disconnection handling. It is fully type-hinted, making it easier to work with. Users can publish and subscribe to MQTT topics with ease, making it a versatile tool for MQTT communication in Python.

aituber-server
AITuberKit server-side is a tool that allows users to receive messages via WebSocket and obtain responses from Open Interpreter. Users can also send files to the server for storage and issue commands to Open Interpreter. The tool is designed for WebSocket operation and provides a default connection URL of `ws://127.0.0.1:8000/ws`. It supports debugging in VSCode with DEBUG_MODE=1. The tool is licensed under KillianLucas/open-interpreter and includes a guide on how to use Open Interpreter.
For similar jobs

minio
MinIO is a High Performance Object Storage released under GNU Affero General Public License v3.0. It is API compatible with Amazon S3 cloud storage service. Use MinIO to build high performance infrastructure for machine learning, analytics and application data workloads.

ai-on-gke
This repository contains assets related to AI/ML workloads on Google Kubernetes Engine (GKE). Run optimized AI/ML workloads with Google Kubernetes Engine (GKE) platform orchestration capabilities. A robust AI/ML platform considers the following layers: Infrastructure orchestration that support GPUs and TPUs for training and serving workloads at scale Flexible integration with distributed computing and data processing frameworks Support for multiple teams on the same infrastructure to maximize utilization of resources

kong
Kong, or Kong API Gateway, is a cloud-native, platform-agnostic, scalable API Gateway distinguished for its high performance and extensibility via plugins. It also provides advanced AI capabilities with multi-LLM support. By providing functionality for proxying, routing, load balancing, health checking, authentication (and more), Kong serves as the central layer for orchestrating microservices or conventional API traffic with ease. Kong runs natively on Kubernetes thanks to its official Kubernetes Ingress Controller.

AI-in-a-Box
AI-in-a-Box is a curated collection of solution accelerators that can help engineers establish their AI/ML environments and solutions rapidly and with minimal friction, while maintaining the highest standards of quality and efficiency. It provides essential guidance on the responsible use of AI and LLM technologies, specific security guidance for Generative AI (GenAI) applications, and best practices for scaling OpenAI applications within Azure. The available accelerators include: Azure ML Operationalization in-a-box, Edge AI in-a-box, Doc Intelligence in-a-box, Image and Video Analysis in-a-box, Cognitive Services Landing Zone in-a-box, Semantic Kernel Bot in-a-box, NLP to SQL in-a-box, Assistants API in-a-box, and Assistants API Bot in-a-box.

awsome-distributed-training
This repository contains reference architectures and test cases for distributed model training with Amazon SageMaker Hyperpod, AWS ParallelCluster, AWS Batch, and Amazon EKS. The test cases cover different types and sizes of models as well as different frameworks and parallel optimizations (Pytorch DDP/FSDP, MegatronLM, NemoMegatron...).

generative-ai-cdk-constructs
The AWS Generative AI Constructs Library is an open-source extension of the AWS Cloud Development Kit (AWS CDK) that provides multi-service, well-architected patterns for quickly defining solutions in code to create predictable and repeatable infrastructure, called constructs. The goal of AWS Generative AI CDK Constructs is to help developers build generative AI solutions using pattern-based definitions for their architecture. The patterns defined in AWS Generative AI CDK Constructs are high level, multi-service abstractions of AWS CDK constructs that have default configurations based on well-architected best practices. The library is organized into logical modules using object-oriented techniques to create each architectural pattern model.

model_server
OpenVINO™ Model Server (OVMS) is a high-performance system for serving models. Implemented in C++ for scalability and optimized for deployment on Intel architectures, the model server uses the same architecture and API as TensorFlow Serving and KServe while applying OpenVINO for inference execution. Inference service is provided via gRPC or REST API, making deploying new algorithms and AI experiments easy.

dify-helm
Deploy langgenius/dify, an LLM based chat bot app on kubernetes with helm chart.