flowgen
AutoGen Visualized - Visual Tools for Multi-Agent Development.
Stars: 123
FlowGen is a tool built for AutoGen, a great agent framework from Microsoft and a lot of contributors. It provides intuitive visual tools that streamline the construction and oversight of complex agent-based workflows, simplifying the process for creators and developers. Users can create Autoflows, chat with agents, and share flow templates. The tool is fully dockerized and supports deployment on Railway.app. Contributions to the project are welcome, and the platform uses semantic-release for versioning and releases.
README:
FlowGen is a tool built for AutoGen, a great agent framework from Microsoft and a lot of contributors.
We regard AutoGen as one of the best frontier technology for next-generation Multi-Agent Applications. FlowGen elevates this concept, providing intuitive visual tools that streamline the construction and oversight of complex agent-based workflows, thereby simplifying the entire process for creators and developers.
Contributions (Issues, Pull Requests, even Typo-corrections) to this project are welcome! All contributors will be added to the Contribution Wall.
You can create an Autoflow from scratch, or fork from a template. The Autoflow is visualized as a graph, and you can drag and drop nodes to build agents in flow style.
You can launch an Autoflow or an Autoflow Template in a chat window, and chat with the agents.
Place to share and discover flow templates.
To quickly explore what FlowGen has to offer, simply visit it https://platform.flowgen.app.
For a more in-depth look at the platform, please refer to our Getting Started and other documents.
We made tutorials based on the official notebooks from Autogen repository. You can refer to the original notebook here.
π² Planned/Working β Completed π With Issues β Out of Scope
Example | Status | Comments |
---|---|---|
simple_chat | β | Simple Chat |
auto_feedback_from_code_execution | β | Feedback from Code Execution |
β | This is a feature to be considered to add to flow generation. #40 | |
chess | π² | This depends on the feature of importing custom Agent #38 |
compression | β | |
dalle_and_gpt4v | β | Supported with app.extensions |
function_call_async | β | |
function_call | β | |
graph_modelling_language | β | This is out of project scope. Open an issue if necessary |
group_chat_RAG | π | This notebook does not work |
groupchat_research | β | |
groupchat_vis | β | |
groupchat | β | |
hierarchy_flow_using_select_speaker | π² | |
human_feedback | β | Human in the Loop |
inception_function | π² | |
β | No plan to support | |
lmm_gpt-4v | β | |
lmm_llava | β | Depends on Replicate |
MathChat | β | Math Chat |
oai_assistant_function_call | β | |
oai_assistant_groupchat | π | Very slow and not work well, sometimes not returning. |
oai_assistant_retrieval | β | Retrieval (OAI) |
oai_assistant_twoagents_basic | β | |
oai_code_interpreter | β | |
planning | β | This sample works fine, but does not exit gracefully. |
qdrant_RetrieveChat | π² | |
RetrieveChat | π² | |
stream | π² | |
teachability | π² | |
teaching | π² | |
two_users | β | The response will be very long and should set a large max_tokens. |
video_transcript_translate_with_whisper | β | Depends on ffmpeg lib, should brew install ffmpeg and export IMAGEIO_FFMPEG_EXE. Since ffmpeg occupies too much space, the online version has removed the support. |
web_info | β | |
cq_math | β | This example is quite irrelevant to autogen, why not just use OpenAI API? |
Async_human_input | β | Need scenario. |
oai_chatgpt_gpt4 | β | Fine-tuning, out of project scope |
oai_completion | β | Fine-tuning, out of project scope |
The project contains Frontend (Built with Next.js) and Backend service (Built with Flask in Python), and have been fully dockerized.
The easiest way to run on local is using docker-compose:
docker-compose up -d
You can also build and run the ui and service separately with docker:
docker build -t flowgen-api ./api
docker run -d -p 5004:5004 flowgen-api
docker build -t flowgen-ui ./ui
docker run -d -p 2855:2855 flowgen-ui
docker build -t flowgen-db ./pocketbase
docker run -d -p 7676:7676 flowgen-db
(The default port number 2855 is the address of our first office.)
Railway.app supports the deployment of applications in Dockers. By clicking the "Deploy on Railway" button, you'll streamline the setup and deployment of your application on Railway platform:
- Click the "Deploy on Railway" button to start the process on Railway.app.
- Log in to Railway and set the following environment variables:
-
PORT
: Please set for each services as2855
,5004
,7676
respectively.
-
- Confirm the settings and deploy.
- After deployment, visit the provided URL to access your deployed application.
If you're interested in contributing to the development of this project or wish to run it from the source code, you have the option to run the ui and service independently. Here's how you can do that:
-
UI (Frontend)
- Navigate to the ui directory
cd ui
. - Rename
.env.sample
to.env.local
and set the value of variables correctly. - Install the necessary dependencies using the appropriate package manager command (e.g.,
pnpm install
oryarn
). - Run the ui service using the start-up script provided (e.g.,
pnpm dev
oryarn dev
).
- Navigate to the ui directory
-
API (Backend Services)
- Switch to the api service directory
cd api
. - Create virtual environment:
python3 -m venv venv
. - Activate virtual environment:
source venv/bin/activate
. - Install all required dependencies:
pip install -r requirements.txt
. - Launch the api service using command
uvicorn app.main:app --reload --port 5004
.
- Switch to the api service directory
REPLICATE_API_TOKEN
is needed for LLaVa agent. If you need to use this agent, make sure to include this token in environment variables, such as the Environment Variables on Railway.app.
IMPORTANT: For security reasons, the latest version of autogen requires Docker for code execution. So you need to install Docker on your local machine beforehand, or add AUTOGEN_USE_DOCKER=False
to file /api/.env
.
-
PocketBase:
- Switch to the PocketBase directory
cd pocketbase
. - Build the container:
docker build -t flowgen-db .
- Run the container:
docker run -it --rm -p 7676:7676 flowgen-db
- Switch to the PocketBase directory
Each new commit to the main branch triggers an automatic deployment on Railway.app, ensuring you experience the latest version of the service.
[!WARNING]
Changes to Pocketbase project will cause the rebuild and redeployment of all instances, which will swipe all the data.
Please do not use it for production purpose, and make sure you export flows in time.
Once you've started both the ui and api services by following the steps previously outlined, you can access the application by opening your web browser and navigating to:
- ui: http://localhost:2855
- api: http://localhost:5004 (OpenAPI docs served at http://localhost:5004/redoc)
- pocketbase: http://localhost:7676
If your services are started successfully and running on the expected ports, you should see the user interface or receive responses from the api services via this URL.
Contributions are welcome! It's not limited to code, but also includes documentation and other aspects of the project. You can leave your comments on the Discord Server.
This project welcomes contributions and suggestions. Please read our Contributing Guide first.
If you are new to GitHub, here is a detailed help source on getting involved with development on GitHub.
Please consider contributing to AutoGen, as FlowGen relies on a robust foundation to deliver its capabilities. Your contributions can help enhance the platform's core functionalities, ensuring a more seamless and efficient development experience for Multi-Agent Applications.
This project uses π¦πsemantic-release to manage versioning and releases. To avoid too frequent auto-releases, we make it a manual GitHub Action to trigger the release.
To follow the Semantic Release process, we enforced commit-lint convention on commit messages. Please refer to Commitlint for more details.
The project is licensed under Apache 2.0 with additional terms and conditions.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for flowgen
Similar Open Source Tools
flowgen
FlowGen is a tool built for AutoGen, a great agent framework from Microsoft and a lot of contributors. It provides intuitive visual tools that streamline the construction and oversight of complex agent-based workflows, simplifying the process for creators and developers. Users can create Autoflows, chat with agents, and share flow templates. The tool is fully dockerized and supports deployment on Railway.app. Contributions to the project are welcome, and the platform uses semantic-release for versioning and releases.
ragas
Ragas is a framework that helps you evaluate your Retrieval Augmented Generation (RAG) pipelines. RAG denotes a class of LLM applications that use external data to augment the LLMβs context. There are existing tools and frameworks that help you build these pipelines but evaluating it and quantifying your pipeline performance can be hard. This is where Ragas (RAG Assessment) comes in. Ragas provides you with the tools based on the latest research for evaluating LLM-generated text to give you insights about your RAG pipeline. Ragas can be integrated with your CI/CD to provide continuous checks to ensure performance.
llm-python
A set of instructional materials, code samples and Python scripts featuring LLMs (GPT etc) through interfaces like llamaindex, langchain, Chroma (Chromadb), Pinecone etc. Mainly used to store reference code for my LangChain tutorials on YouTube.
llm-graph-builder
Knowledge Graph Builder App is a tool designed to convert PDF documents into a structured knowledge graph stored in Neo4j. It utilizes OpenAI's GPT/Diffbot LLM to extract nodes, relationships, and properties from PDF text content. Users can upload files from local machine or S3 bucket, choose LLM model, and create a knowledge graph. The app integrates with Neo4j for easy visualization and querying of extracted information.
TableLLM
TableLLM is a large language model designed for efficient tabular data manipulation tasks in real office scenarios. It can generate code solutions or direct text answers for tasks like insert, delete, update, query, merge, and chart operations on tables embedded in spreadsheets or documents. The model has been fine-tuned based on CodeLlama-7B and 13B, offering two scales: TableLLM-7B and TableLLM-13B. Evaluation results show its performance on benchmarks like WikiSQL, Spider, and self-created table operation benchmark. Users can use TableLLM for code and text generation tasks on tabular data.
sqlcoder
Defog's SQLCoder is a family of state-of-the-art large language models (LLMs) designed for converting natural language questions into SQL queries. It outperforms popular open-source models like gpt-4 and gpt-4-turbo on SQL generation tasks. SQLCoder has been trained on more than 20,000 human-curated questions based on 10 different schemas, and the model weights are licensed under CC BY-SA 4.0. Users can interact with SQLCoder through the 'transformers' library and run queries using the 'sqlcoder launch' command in the terminal. The tool has been tested on NVIDIA GPUs with more than 16GB VRAM and Apple Silicon devices with some limitations. SQLCoder offers a demo on their website and supports quantized versions of the model for consumer GPUs with sufficient memory.
cambrian
Cambrian-1 is a fully open project focused on exploring multimodal Large Language Models (LLMs) with a vision-centric approach. It offers competitive performance across various benchmarks with models at different parameter levels. The project includes training configurations, model weights, instruction tuning data, and evaluation details. Users can interact with Cambrian-1 through a Gradio web interface for inference. The project is inspired by LLaVA and incorporates contributions from Vicuna, LLaMA, and Yi. Cambrian-1 is licensed under Apache 2.0 and utilizes datasets and checkpoints subject to their respective original licenses.
outspeed
Outspeed is a PyTorch-inspired SDK for building real-time AI applications on voice and video input. It offers low-latency processing of streaming audio and video, an intuitive API familiar to PyTorch users, flexible integration of custom AI models, and tools for data preprocessing and model deployment. Ideal for developing voice assistants, video analytics, and other real-time AI applications processing audio-visual data.
AI-Gateway
The AI-Gateway repository explores the AI Gateway pattern through a series of experimental labs, focusing on Azure API Management for handling AI services APIs. The labs provide step-by-step instructions using Jupyter notebooks with Python scripts, Bicep files, and APIM policies. The goal is to accelerate experimentation of advanced use cases and pave the way for further innovation in the rapidly evolving field of AI. The repository also includes a Mock Server to mimic the behavior of the OpenAI API for testing and development purposes.
torchtune
Torchtune is a PyTorch-native library for easily authoring, fine-tuning, and experimenting with LLMs. It provides native-PyTorch implementations of popular LLMs using composable and modular building blocks, easy-to-use and hackable training recipes for popular fine-tuning techniques, YAML configs for easily configuring training, evaluation, quantization, or inference recipes, and built-in support for many popular dataset formats and prompt templates to help you quickly get started with training.
auto-dev
AutoDev is an AI-powered coding wizard that supports multiple languages, including Java, Kotlin, JavaScript/TypeScript, Rust, Python, Golang, C/C++/OC, and more. It offers a range of features, including auto development mode, copilot mode, chat with AI, customization options, SDLC support, custom AI agent integration, and language features such as language support, extensions, and a DevIns language for AI agent development. AutoDev is designed to assist developers with tasks such as auto code generation, bug detection, code explanation, exception tracing, commit message generation, code review content generation, smart refactoring, Dockerfile generation, CI/CD config file generation, and custom shell/command generation. It also provides a built-in LLM fine-tune model and supports UnitEval for LLM result evaluation and UnitGen for code-LLM fine-tune data generation.
wppconnect
WPPConnect is an open source project developed by the JavaScript community with the aim of exporting functions from WhatsApp Web to the node, which can be used to support the creation of any interaction, such as customer service, media sending, intelligence recognition based on phrases artificial and many other things.
opik
Comet Opik is a repository containing two main services: a frontend and a backend. It provides a Python SDK for easy installation. Users can run the full application locally with minikube, following specific installation prerequisites. The repository structure includes directories for applications like Opik backend, with detailed instructions available in the README files. Users can manage the installation using simple k8s commands and interact with the application via URLs for checking the running application and API documentation. The repository aims to facilitate local development and testing of Opik using Kubernetes technology.
Pearl
Pearl is a production-ready Reinforcement Learning AI agent library open-sourced by the Applied Reinforcement Learning team at Meta. It enables researchers and practitioners to develop Reinforcement Learning AI agents that prioritize cumulative long-term feedback over immediate feedback and can adapt to environments with limited observability, sparse feedback, and high stochasticity. Pearl offers a diverse set of unique features for production environments, including dynamic action spaces, offline learning, intelligent neural exploration, safe decision making, history summarization, and data augmentation.
generative-ai-cdk-constructs
The AWS Generative AI Constructs Library is an open-source extension of the AWS Cloud Development Kit (AWS CDK) that provides multi-service, well-architected patterns for quickly defining solutions in code to create predictable and repeatable infrastructure, called constructs. The goal of AWS Generative AI CDK Constructs is to help developers build generative AI solutions using pattern-based definitions for their architecture. The patterns defined in AWS Generative AI CDK Constructs are high level, multi-service abstractions of AWS CDK constructs that have default configurations based on well-architected best practices. The library is organized into logical modules using object-oriented techniques to create each architectural pattern model.
redis-ai-resources
A curated repository of code recipes, demos, and resources for basic and advanced Redis use cases in the AI ecosystem. It includes demos for ArxivChatGuru, Redis VSS, Vertex AI & Redis, Agentic RAG, ArXiv Search, and Product Search. Recipes cover topics like Getting started with RAG, Semantic Cache, Advanced RAG, and Recommendation systems. The repository also provides integrations/tools like RedisVL, AWS Bedrock, LangChain Python, LangChain JS, LlamaIndex, Semantic Kernel, RelevanceAI, and DocArray. Additional content includes blog posts, talks, reviews, and documentation related to Vector Similarity Search, AI-Powered Document Search, Vector Databases, Real-Time Product Recommendations, and more. Benchmarks compare Redis against other Vector Databases and ANN benchmarks. Documentation includes QuickStart guides, official literature for Vector Similarity Search, Redis-py client library docs, Redis Stack documentation, and Redis client list.
For similar tasks
flowgen
FlowGen is a tool built for AutoGen, a great agent framework from Microsoft and a lot of contributors. It provides intuitive visual tools that streamline the construction and oversight of complex agent-based workflows, simplifying the process for creators and developers. Users can create Autoflows, chat with agents, and share flow templates. The tool is fully dockerized and supports deployment on Railway.app. Contributions to the project are welcome, and the platform uses semantic-release for versioning and releases.
agentok
Agentok Studio is a visual tool built for AutoGen, a cutting-edge agent framework from Microsoft and various contributors. It offers intuitive visual tools to simplify the construction and management of complex agent-based workflows. Users can create workflows visually as graphs, chat with agents, and share flow templates. The tool is designed to streamline the development process for creators and developers working on next-generation Multi-Agent Applications.
hass-ollama-conversation
The Ollama Conversation integration adds a conversation agent powered by Ollama in Home Assistant. This agent can be used in automations to query information provided by Home Assistant about your house, including areas, devices, and their states. Users can install the integration via HACS and configure settings such as API timeout, model selection, context size, maximum tokens, and other parameters to fine-tune the responses generated by the AI language model. Contributions to the project are welcome, and discussions can be held on the Home Assistant Community platform.
rclip
rclip is a command-line photo search tool powered by the OpenAI's CLIP neural network. It allows users to search for images using text queries, similar image search, and combining multiple queries. The tool extracts features from photos to enable searching and indexing, with options for previewing results in supported terminals or custom viewers. Users can install rclip on Linux, macOS, and Windows using different installation methods. The repository follows the Conventional Commits standard and welcomes contributions from the community.
honcho
Honcho is a platform for creating personalized AI agents and LLM powered applications for end users. The repository is a monorepo containing the server/API for managing database interactions and storing application state, along with a Python SDK. It utilizes FastAPI for user context management and Poetry for dependency management. The API can be run using Docker or manually by setting environment variables. The client SDK can be installed using pip or Poetry. The project is open source and welcomes contributions, following a fork and PR workflow. Honcho is licensed under the AGPL-3.0 License.
core
OpenSumi is a framework designed to help users quickly build AI Native IDE products. It provides a set of tools and templates for creating Cloud IDEs, Desktop IDEs based on Electron, CodeBlitz web IDE Framework, Lite Web IDE on the Browser, and Mini-App liked IDE. The framework also offers documentation for users to refer to and a detailed guide on contributing to the project. OpenSumi encourages contributions from the community and provides a platform for users to report bugs, contribute code, or improve documentation. The project is licensed under the MIT license and contains third-party code under other open source licenses.
yolo-ios-app
The Ultralytics YOLO iOS App GitHub repository offers an advanced object detection tool leveraging YOLOv8 models for iOS devices. Users can transform their devices into intelligent detection tools to explore the world in a new and exciting way. The app provides real-time detection capabilities with multiple AI models to choose from, ranging from 'nano' to 'x-large'. Contributors are welcome to participate in this open-source project, and licensing options include AGPL-3.0 for open-source use and an Enterprise License for commercial integration. Users can easily set up the app by following the provided steps, including cloning the repository, adding YOLOv8 models, and running the app on their iOS devices.
PyAirbyte
PyAirbyte brings the power of Airbyte to every Python developer by providing a set of utilities to use Airbyte connectors in Python. It enables users to easily manage secrets, work with various connectors like GitHub, Shopify, and Postgres, and contribute to the project. PyAirbyte is not a replacement for Airbyte but complements it, supporting data orchestration frameworks like Airflow and Snowpark. Users can develop ETL pipelines and import connectors from local directories. The tool simplifies data integration tasks for Python developers.
For similar jobs
sweep
Sweep is an AI junior developer that turns bugs and feature requests into code changes. It automatically handles developer experience improvements like adding type hints and improving test coverage.
teams-ai
The Teams AI Library is a software development kit (SDK) that helps developers create bots that can interact with Teams and Microsoft 365 applications. It is built on top of the Bot Framework SDK and simplifies the process of developing bots that interact with Teams' artificial intelligence capabilities. The SDK is available for JavaScript/TypeScript, .NET, and Python.
ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.
classifai
Supercharge WordPress Content Workflows and Engagement with Artificial Intelligence. Tap into leading cloud-based services like OpenAI, Microsoft Azure AI, Google Gemini and IBM Watson to augment your WordPress-powered websites. Publish content faster while improving SEO performance and increasing audience engagement. ClassifAI integrates Artificial Intelligence and Machine Learning technologies to lighten your workload and eliminate tedious tasks, giving you more time to create original content that matters.
chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.
BricksLLM
BricksLLM is a cloud native AI gateway written in Go. Currently, it provides native support for OpenAI, Anthropic, Azure OpenAI and vLLM. BricksLLM aims to provide enterprise level infrastructure that can power any LLM production use cases. Here are some use cases for BricksLLM: * Set LLM usage limits for users on different pricing tiers * Track LLM usage on a per user and per organization basis * Block or redact requests containing PIIs * Improve LLM reliability with failovers, retries and caching * Distribute API keys with rate limits and cost limits for internal development/production use cases * Distribute API keys with rate limits and cost limits for students
uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.
griptape
Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. Griptape's core components include Structures (Agents, Pipelines, and Workflows), Tasks, Tools, Memory (Conversation Memory, Task Memory, and Meta Memory), Drivers (Prompt and Embedding Drivers, Vector Store Drivers, Image Generation Drivers, Image Query Drivers, SQL Drivers, Web Scraper Drivers, and Conversation Memory Drivers), Engines (Query Engines, Extraction Engines, Summary Engines, Image Generation Engines, and Image Query Engines), and additional components (Rulesets, Loaders, Artifacts, Chunkers, and Tokenizers). Griptape enables developers to create AI-powered applications with ease and efficiency.