pilottai

pilottai

Python framework for building scalable multi-agent systems with built-in orchestration, LLM integration, and intelligent task processing. Features dynamic scaling, fault tolerance, and advanced load balancing.

Stars: 216

Visit
 screenshot

PilottAI is a Python framework for building autonomous multi-agent systems with advanced orchestration capabilities. It provides enterprise-ready features for building scalable AI applications. The framework includes hierarchical agent systems, production-ready features like asynchronous processing and fault tolerance, advanced memory management with semantic storage, and integrations with multiple LLM providers and custom tools. PilottAI offers specialized agents for various tasks such as customer service, document processing, email handling, knowledge acquisition, marketing, research analysis, sales, social media, and web search. The framework also provides documentation, example use cases, and advanced features like memory management, load balancing, and fault tolerance.

README:

PilottAI

PilottAI Framework Logo

Build Intelligent Multi-Agent Systems with Python

Scale your AI applications with orchestrated autonomous agents

PyPI version Python 3.10+ License: MIT Documentation Status Code style: black

Overview

PilottAI is a Python framework for building autonomous multi-agent systems with advanced orchestration capabilities. It provides enterprise-ready features for building scalable AI applications.

Key Features

  • 🤖 Hierarchical Agent System

    • Manager and worker agent hierarchies
    • Intelligent task routing
    • Context-aware processing
    • Specialized agent implementations
  • 🚀 Production Ready

    • Asynchronous processing
    • Dynamic scaling
    • Load balancing
    • Fault tolerance
    • Comprehensive logging
  • 🧠 Advanced Memory

    • Semantic storage
    • Task history tracking
    • Context preservation
    • Knowledge retrieval
  • 🔌 Integrations

    • Multiple LLM providers (OpenAI, Anthropic, Google)
    • Document processing
    • WebSocket support
    • Custom tool integration

Installation

pip install pilott

Quick Start

from pilott import Pilott
from pilott.core import AgentConfig, AgentRole, LLMConfig

# Configure LLM
llm_config = LLMConfig(
  model_name="gpt-4",
  provider="openai",
  api_key="your-api-key"
)

# Setup agent configuration
config = AgentConfig(
  role="processor",
  role_type=AgentRole.WORKER,
  goal="Process documents efficiently",
  description="Document processing worker",
  max_queue_size=100
)


async def main():
  # Initialize system
  pilott = Pilott(name="DocumentProcessor")

  try:
    # Start system
    await pilott.start()

    # Add agent
    agent = await pilott.add_agent(
      agent_type="processor",
      config=config,
      llm_config=llm_config
    )

    # Process document
    result = await pilott.execute_task({
      "type": "process_document",
      "file_path": "document.pdf"
    })

    print(f"Processing result: {result}")

  finally:
    await pilott.stop()


if __name__ == "__main__":
  import asyncio

  asyncio.run(main())

Specialized Agents

PilottAI includes ready-to-use specialized agents:

Documentation

Visit our documentation for:

  • Detailed guides
  • API reference
  • Examples
  • Best practices

Example Use Cases

  • 📄 Document Processing

    # Process PDF documents
    result = await pilott.execute_task({
        "type": "process_pdf",
        "file_path": "document.pdf"
    })
  • 🤖 AI Agents

    # Create specialized agents
    researcher = await pilott.add_agent(
        agent_type="researcher",
        config=researcher_config
    )
  • 🔄 Task Orchestration

    # Orchestrate complex workflows
    task_result = await manager_agent.execute_task({
        "type": "complex_workflow",
        "steps": ["extract", "analyze", "summarize"]
    })

Advanced Features

Memory Management

# Store and retrieve context
await agent.enhanced_memory.store_semantic(
    text="Important information",
    metadata={"type": "research"}
)

Load Balancing

# Configure load balancing
config = LoadBalancerConfig(
    check_interval=30,
    overload_threshold=0.8
)

Fault Tolerance

# Configure fault tolerance
config = FaultToleranceConfig(
    recovery_attempts=3,
    heartbeat_timeout=60
)

Project Structure

pilott/
├── core/            # Core framework components
├── agents/          # Agent implementations
├── memory/          # Memory management
├── orchestration/   # System orchestration
├── tools/           # Tool integrations
└── utils/           # Utility functions

Contributing

We welcome contributions! See our Contributing Guide for details on:

  • Development setup
  • Coding standards
  • Pull request process

Support

License

PilottAI is MIT licensed. See LICENSE for details.


Built with ❤️ by the PilottAI Team

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for pilottai

Similar Open Source Tools

For similar tasks

For similar jobs