
RainbowGPT
πRainbowGPT AI Agent & Dalle3 free & Stock Analysis & GPT-4 Free API & Private LLM Application & SQL Agent for Everyone
Stars: 86

RainbowGPT is a versatile tool that offers a range of functionalities, including Stock Analysis for financial decision-making, MySQL Management for database navigation, and integration of AI technologies like GPT-4 and ChatGlm3. It provides a user-friendly interface suitable for all skill levels, ensuring seamless information flow and continuous expansion of emerging technologies. The tool enhances adaptability, creativity, and insight, making it a valuable asset for various projects and tasks.
README:
π [2024-12-27]RainbowStock_Analysis support gpt-4o-mini, gpt-4oοΌqwen2.5, vllm
π [2023-12-15]Dalle3 Artistic Image Generation Unveiled π¨
π¨ [2023-12-10]Simplified MySQL Management: Effortlessly navigate MySQL databases with our cornerstone Mysql Agent UI module. It offers a user-friendly interface suitable for all skill levels.
π [2023-12-05]Comprehensive Stock Insights: Empower financial decisions with our Stock Analysis module. Advanced technology provides a holistic view of market trends, risk assessments, and personalized recommendations.
βοΈ Technological Synergy: Benefit from the seamless integration of AI technologies like GPT-4, GPT3.5, ChatGlm3, Qwen, and more. This synergy enhances adaptability and ensures smooth information flow.
π Innovation Roadmap: Stay at the forefront of AI advancements with RainbowGPT's commitment to continuous expansion and integration of emerging technologies.
Experience simplicity, insight, and creativity with RainbowGPT's powerful features!
β¨ Navigate at [cookbook.openai.com] β’
π¦οΈπ LangChain β‘ Building applications with LLMs through composability β‘ β’
| Documentation | Blog | Paper | Discord | Twitter/X | Developer Slack |
- Getting Started
- Free Use of GPT API
- Knowledge Base QA Search Algorithm
- BM25 Retrievers
- EnsembleRetriever
- Common Usage Pattern
- RainbowGPT Overview
-
Install Required Packages:
Make sure your environment is set up, and install the necessary packages using the following command:
Note: If you encounter any issues, ensure that you have the correct dependencies installed.
pip install -r requirements.txt
[!TIP] To launch the entire project, you only need to execute
RainbowGPT_Launchpad_UI.py
make sure to relocate the modifiedThis step is no longer required in the newest version!3rd_modify/langchain/vectorstores/chroma.py
file to the Langchain module's library folder and rename it to match the library file when use Local Search tool.Make sure to select the right
Rainbow_utils/chromedriver.exe
to match your Chrome version when use Google Search toolThis step is crucial for proper execution. π
Before using the application, follow these steps to configure API-related information in the .env
file:
-
OpenAI API Key:
- Create an account on OpenAI and obtain your API key.
- Open the
.env
file and set your API key:
ReplaceOPENAI_API_KEY=YOUR_OPENAI_API_KEY
YOUR_OPENAI_API_KEY
with the actual API key you obtained from OpenAI. Ensure accuracy to prevent authentication issues.
-
Local API URL (Qwen examples):
- To start a Qwen server with OpenAI-like capabilities, use the following commands:
After starting the server, configure the
pip install fastapi uvicorn openai pydantic sse_starlette python Rainbow_utils/get_local_openai_api.py
api_base
andapi_key
in your client. Ensure that the configuration follows the specified format.β¨ I have already integrated it. Please fill in the corresponding apibase and apikey in UI.llm = ChatOpenAI( model_name="Qwen", openai_api_base="http://localhost:8000/v1", openai_api_key="EMPTY", streaming=False, )
- To start a Qwen server with OpenAI-like capabilities, use the following commands:
Now your environment is set up, and the API is configured. You are ready to run the application! Feel free to let me know if you have any specific preferences or additional details you'd like to include!
π We are committed to expanding capacity based on usage and providing the API for free as long as we are not officially sanctioned. If you find this project helpful, please consider giving us a β.
This API Key is used for forwarding API requests. Change the Host to api.chatanywhere.com.cn
(preferred for domestic usage) or api.chatanywhere.cn
(for international usage, domestic users need a global proxy).
- π Apply for a Free API Key in Beta
- Forwarding Host1:
https://api.chatanywhere.com.cn
(Domestic relay, lower latency, recommended) - Forwarding Host2:
https://api.chatanywhere.cn
(For international usage, domestic users need a global proxy) - Check your balance and usage records (announcements are also posted here): Balance Inquiry and Announcements
- The forwarding API cannot directly make requests to the official api.openai.com endpoint. Change the request address to
api.chatanywhere.com.cn
to use it. Most plugins and software can be modified accordingly.
Method 1
import openai
openai.api_base = "https://api.chatanywhere.com.cn/v1"
# openai.api_base = "https://api.chatanywhere.cn/v1"
Method 2 (Use if Method 1 doesn't work)
Modify the environment variable OPENAI_API_BASE
. Search for how to change environment variables on your specific system. If changes to the environment variable don't take effect, restart your system.
OPENAI_API_BASE=https://api.chatanywhere.com.cn/v1
or OPENAI_API_BASE=https://api.chatanywhere.cn/v1
Open Source gpt_academic
Locate the config.py
file and modify the API_URL_REDIRECT
configuration to the following:
API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://api.chatanywhere.com.cn/v1/chat/completions"}
# API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://api.chatanywhere.cn/v1/chat/completions"}
The free API Key has a limit of 60 requests per hour per IP address and Key. If you use multiple keys under the same IP, the total hourly request limit for all keys cannot exceed 60. Similarly, if you use a single key across multiple IPs, the hourly request limit for that key cannot exceed 60.
π§ The knowledge base QA search algorithm optimizes document retrieval through context compression. Leveraging the query context, it strategically reduces document content using a document compressor, enhancing retrieval efficiency by returning only information relevant to the query. The ensemble of retrievers combines diverse results, creating a synergy that elevates overall performance.
- BM25-based Retriever: Specialized in efficiently locating relevant documents based on keywords, making it particularly effective for sparse retrieval.
- Embedding Similarity Retriever: Utilizes embedding vectors for document and query embedding, excelling in identifying relevant documents through semantic similarity. This retriever is well-suited for dense retrieval scenarios.
πEnsembleRetriever is a powerful retrieval mechanism that combines the strengths of various retrievers. It takes a list of retrievers as input, integrates their results using the get_relevant_documents()
methods, and reranks the outcomes using the Reciprocal Rank Fusion algorithm.
By leveraging the diverse strengths of different algorithms, EnsembleRetriever achieves superior performance compared to individual retrievers.
π The most effective use of the Knowledge Base QA Search involves combining a sparse retriever (e.g., BM25) with a dense retriever (e.g., embedding similarity). This "hybrid search" optimally utilizes the complementary strengths of both retrievers for comprehensive Knowledge.
π Explore the Stock Analysis module and unlock valuable insights for your investment decisions! π #StockAnalysis #RainbowGPT #AIInvesting
π Retrieval Search | π SQL Agent |
---|---|
![]() |
![]() |
β‘π Web Scraping Summarization | π€ Chatbots |
---|---|
![]() |
![]() |
π Explore the diverse capabilities of RainbowGPT and leverage its powerful modules for your projects! πβ¨
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for RainbowGPT
Similar Open Source Tools

RainbowGPT
RainbowGPT is a versatile tool that offers a range of functionalities, including Stock Analysis for financial decision-making, MySQL Management for database navigation, and integration of AI technologies like GPT-4 and ChatGlm3. It provides a user-friendly interface suitable for all skill levels, ensuring seamless information flow and continuous expansion of emerging technologies. The tool enhances adaptability, creativity, and insight, making it a valuable asset for various projects and tasks.

sec-parser
The `sec-parser` project simplifies extracting meaningful information from SEC EDGAR HTML documents by organizing them into semantic elements and a tree structure. It helps in parsing SEC filings for financial and regulatory analysis, analytics and data science, AI and machine learning, causal AI, and large language models. The tool is especially beneficial for AI, ML, and LLM applications by streamlining data pre-processing and feature extraction.

Curie
Curie is an AI-agent framework designed for automated and rigorous scientific experimentation. It automates end-to-end workflow management, ensures methodical procedure, reliability, and interpretability, and supports ML research, system analysis, and scientific discovery. It provides a benchmark with questions from 4 Computer Science domains. Users can customize experiment agents and adapt to their own tasks by configuring base_config.json. Curie is suitable for hyperparameter tuning, algorithm behavior analysis, system performance benchmarking, and automating computational simulations.

deep-research
Deep Research is a lightning-fast tool that uses powerful AI models to generate comprehensive research reports in just a few minutes. It leverages advanced 'Thinking' and 'Task' models, combined with an internet connection, to provide fast and insightful analysis on various topics. The tool ensures privacy by processing and storing all data locally. It supports multi-platform deployment, offers support for various large language models, web search functionality, knowledge graph generation, research history preservation, local and server API support, PWA technology, multi-key payload support, multi-language support, and is built with modern technologies like Next.js and Shadcn UI. Deep Research is open-source under the MIT License.

KrillinAI
KrillinAI is a video subtitle translation and dubbing tool based on AI large models, featuring speech recognition, intelligent sentence segmentation, professional translation, and one-click deployment of the entire process. It provides a one-stop workflow from video downloading to the final product, empowering cross-language cultural communication with AI. The tool supports multiple languages for input and translation, integrates features like automatic dependency installation, video downloading from platforms like YouTube and Bilibili, high-speed subtitle recognition, intelligent subtitle segmentation and alignment, custom vocabulary replacement, professional-level translation engine, and diverse external service selection for speech and large model services.

graphiti
Graphiti is a framework for building and querying temporally-aware knowledge graphs, tailored for AI agents in dynamic environments. It continuously integrates user interactions, structured and unstructured data, and external information into a coherent, queryable graph. The framework supports incremental data updates, efficient retrieval, and precise historical queries without complete graph recomputation, making it suitable for developing interactive, context-aware AI applications.

KlicStudio
Klic Studio is a versatile audio and video localization and enhancement solution developed by Krillin AI. This minimalist yet powerful tool integrates video translation, dubbing, and voice cloning, supporting both landscape and portrait formats. With an end-to-end workflow, users can transform raw materials into beautifully ready-to-use cross-platform content with just a few clicks. The tool offers features like video acquisition, accurate speech recognition, intelligent segmentation, terminology replacement, professional translation, voice cloning, video composition, and cross-platform support. It also supports various speech recognition services, large language models, and TTS text-to-speech services. Users can easily deploy the tool using Docker and configure it for different tasks like subtitle translation, large model translation, and optional voice services.

BentoML
BentoML is an open-source model serving library for building performant and scalable AI applications with Python. It comes with everything you need for serving optimization, model packaging, and production deployment.

openmeter
OpenMeter is a real-time and scalable usage metering tool for AI, usage-based billing, infrastructure, and IoT use cases. It provides a REST API for integrations and offers client SDKs in Node.js, Python, Go, and Web. OpenMeter is licensed under the Apache 2.0 License.

atropos
Atropos is a robust and scalable framework for Reinforcement Learning Environments with Large Language Models (LLMs). It provides a flexible platform to accelerate LLM-based RL research across diverse interactive settings. Atropos supports multi-turn and asynchronous RL interactions, integrates with various inference APIs, offers a standardized training interface for experimenting with different RL algorithms, and allows for easy scalability by launching more environment instances. The framework manages diverse environment types concurrently for heterogeneous, multi-modal training.

metta
Metta AI is an open-source research project focusing on the emergence of cooperation and alignment in multi-agent AI systems. It explores the impact of social dynamics like kinship and mate selection on learning and cooperative behaviors of AI agents. The project introduces a reward-sharing mechanism mimicking familial bonds and mate selection to observe the evolution of complex social behaviors among AI agents. Metta aims to contribute to the discussion on safe and beneficial AGI by creating an environment where AI agents can develop general intelligence through continuous learning and adaptation.

exospherehost
Exosphere is an open source infrastructure designed to run AI agents at scale for large data and long running flows. It allows developers to define plug and playable nodes that can be run on a reliable backbone in the form of a workflow, with features like dynamic state creation at runtime, infinite parallel agents, persistent state management, and failure handling. This enables the deployment of production agents that can scale beautifully to build robust autonomous AI workflows.

mmore
MMORE is an open-source, end-to-end pipeline for ingesting, processing, indexing, and retrieving knowledge from various file types such as PDFs, Office docs, images, audio, video, and web pages. It standardizes content into a unified multimodal format, supports distributed CPU/GPU processing, and offers hybrid dense+sparse retrieval with an integrated RAG service through CLI and APIs.

MobChip
MobChip is an all-in-one Entity AI and Bosses Library for Minecraft 1.13 and above. It simplifies the implementation of Minecraft's native entity AI into plugins, offering documentation, API usage, and utilities for ease of use. The library is flexible, using Reflection and Abstraction for modern functionality on older versions, and ensuring compatibility across multiple Minecraft versions. MobChip is open source, providing features like Bosses Library, Pathfinder Goals, Behaviors, Villager Gossip, Ender Dragon Phases, and more.

wanda
Official PyTorch implementation of Wanda (Pruning by Weights and Activations), a simple and effective pruning approach for large language models. The pruning approach removes weights on a per-output basis, by the product of weight magnitudes and input activation norms. The repository provides support for various features such as LLaMA-2, ablation study on OBS weight update, zero-shot evaluation, and speedup evaluation. Users can replicate main results from the paper using provided bash commands. The tool aims to enhance the efficiency and performance of language models through structured and unstructured sparsity techniques.

EasyInstruct
EasyInstruct is a Python package proposed as an easy-to-use instruction processing framework for Large Language Models (LLMs) like GPT-4, LLaMA, ChatGLM in your research experiments. EasyInstruct modularizes instruction generation, selection, and prompting, while also considering their combination and interaction.
For similar tasks

FinMem-LLM-StockTrading
This repository contains the Python source code for FINMEM, a Performance-Enhanced Large Language Model Trading Agent with Layered Memory and Character Design. It introduces FinMem, a novel LLM-based agent framework devised for financial decision-making, encompassing three core modules: Profiling, Memory with layered processing, and Decision-making. FinMem's memory module aligns closely with the cognitive structure of human traders, offering robust interpretability and real-time tuning. The framework enables the agent to self-evolve its professional knowledge, react agilely to new investment cues, and continuously refine trading decisions in the volatile financial environment. It presents a cutting-edge LLM agent framework for automated trading, boosting cumulative investment returns.

RainbowGPT
RainbowGPT is a versatile tool that offers a range of functionalities, including Stock Analysis for financial decision-making, MySQL Management for database navigation, and integration of AI technologies like GPT-4 and ChatGlm3. It provides a user-friendly interface suitable for all skill levels, ensuring seamless information flow and continuous expansion of emerging technologies. The tool enhances adaptability, creativity, and insight, making it a valuable asset for various projects and tasks.

ai-financial-agent
AI Financial Agent is a proof of concept project exploring the use of AI for investment research. It provides an AI SDK with a unified API for generating text and structured objects, along with access to real-time and historical stock market data optimized for AI financial agents. The project includes features like dynamic chat interfaces, support for multiple model providers, and styling with Tailwind CSS. Users can deploy their own version of the AI Financial Agent using Vercel and GitHub integration.

stock-trading
StockTrading AI is a small model stock automatic trading system that integrates with securities platforms, implements automated stock trading, utilizes QuartZ for scheduled tasks to update data daily, employs DL4J framework for LSTM model guidance on stock buying with T+1 short-term trading strategy, utilizes K8S+GithubAction for DevOps, and supports distributed offline training. Future optimizations include obtaining more historical stock data for incremental model training and tuning model hyperparameters to improve price trend prediction accuracy. The system provides various page displays for profit data statistics, trade order queries, stock price viewing, model prediction performance, scheduled task scheduling, and real-time log tracking.

FinanceMCP
FinanceMCP is a professional financial data server based on the MCP protocol, integrating the Tushare API to provide real-time financial data and technical indicator analysis for AI assistants like Claude. It offers various free public cloud services, including a web-based experience version and desktop configuration for production environments. The core features include an intelligent technical indicator system with 5 core indicators, comprehensive market coverage across 10 markets, tools for stock, index, company, macroeconomic, and fund data analysis, as well as specific modules for analyzing US and Hong Kong stock companies. The tool supports tasks like stock technical analysis, comprehensive analysis, news and macroeconomic analysis, fund and bond data queries, among others. It can be locally deployed using Streamable HTTP or SSE modes, with detailed installation and configuration instructions provided.
For similar jobs

sweep
Sweep is an AI junior developer that turns bugs and feature requests into code changes. It automatically handles developer experience improvements like adding type hints and improving test coverage.

teams-ai
The Teams AI Library is a software development kit (SDK) that helps developers create bots that can interact with Teams and Microsoft 365 applications. It is built on top of the Bot Framework SDK and simplifies the process of developing bots that interact with Teams' artificial intelligence capabilities. The SDK is available for JavaScript/TypeScript, .NET, and Python.

ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.

classifai
Supercharge WordPress Content Workflows and Engagement with Artificial Intelligence. Tap into leading cloud-based services like OpenAI, Microsoft Azure AI, Google Gemini and IBM Watson to augment your WordPress-powered websites. Publish content faster while improving SEO performance and increasing audience engagement. ClassifAI integrates Artificial Intelligence and Machine Learning technologies to lighten your workload and eliminate tedious tasks, giving you more time to create original content that matters.

chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.

BricksLLM
BricksLLM is a cloud native AI gateway written in Go. Currently, it provides native support for OpenAI, Anthropic, Azure OpenAI and vLLM. BricksLLM aims to provide enterprise level infrastructure that can power any LLM production use cases. Here are some use cases for BricksLLM: * Set LLM usage limits for users on different pricing tiers * Track LLM usage on a per user and per organization basis * Block or redact requests containing PIIs * Improve LLM reliability with failovers, retries and caching * Distribute API keys with rate limits and cost limits for internal development/production use cases * Distribute API keys with rate limits and cost limits for students

uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.

griptape
Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. Griptape's core components include Structures (Agents, Pipelines, and Workflows), Tasks, Tools, Memory (Conversation Memory, Task Memory, and Meta Memory), Drivers (Prompt and Embedding Drivers, Vector Store Drivers, Image Generation Drivers, Image Query Drivers, SQL Drivers, Web Scraper Drivers, and Conversation Memory Drivers), Engines (Query Engines, Extraction Engines, Summary Engines, Image Generation Engines, and Image Query Engines), and additional components (Rulesets, Loaders, Artifacts, Chunkers, and Tokenizers). Griptape enables developers to create AI-powered applications with ease and efficiency.