
DataFlow
Easy Data Preparation with latest LLMs-based Operators and Pipelines.
Stars: 1259

DataFlow is a data preparation and training system designed to parse, generate, process, and evaluate high-quality data from noisy sources, improving the performance of large language models in specific domains. It constructs diverse operators and pipelines, validated to enhance domain-oriented LLM's performance in fields like healthcare, finance, and law. DataFlow also features an intelligent DataFlow-agent capable of dynamically assembling new pipelines by recombining existing operators on demand.
README:
https://github.com/user-attachments/assets/19742159-cfe0-42a6-9d3d-152466d2d588
🎉 [2025-06-28] We’re excited to announce that DataFlow, our Data-centric AI system, is now released! Stay tuned for future updates.
DataFlow is a data preparation and training system designed to parse, generate, process and evaluate high-quality data from noisy sources (PDF, plain-text, low-quality QA), thereby improving the performance of large language models (LLMs) in specific domains through targeted training (Pre-training, Supervised Fine-tuing, RL training) or RAG using knowledge base cleaning. DataFlow has been empirically validated to improve domain-oriented LLM's performance in fields such as healthcare, finance, and law.
Specifically, we constructing diverse operators
leveraging rule-based methods, deep learning models, LLMs, and LLM APIs. These operators are systematically integrated into distinct pipelines
, collectively forming the comprehensive DataFlow system
. Additionally, we develop an intelligent DataFlow-agent
capable of dynamically assembling new pipelines
by recombining existing operators
on demand.
DataFlow adopts a modular operator design philosophy, building flexible data processing pipelines by combining different types of operators. As the basic unit of data processing, an operator can receive structured data input (such as in json/jsonl/csv format) and, after intelligent processing, output high-quality data results. For a detailed guide on using operators, please refer to the Operator Documentation.
In the DataFlow framework, operators are divided into three core categories based on their functional characteristics:
Operator Type | Quantity | Main Function |
---|---|---|
Generic Operators | 80+ | Covers general functions for text evaluation, processing, and synthesis |
Domain-Specific Operators | 40+ | Specialized processing for specific domains (e.g., medical, financial, legal) |
Evaluation Operators | 20+ | Comprehensively evaluates data quality from 6 dimensions |
Current Pipelines in Dataflow are as follows:
- 📝 Text Pipeline: Mine question-answer pairs from large-scale plain-text data (mostly crawed from InterNet) for use in SFT and RL training.
- 🧠 Reasoning Pipeline: Enhances existing question–answer pairs with (1) extended chain-of-thought, (2) category classification, and (3) difficulty estimation.
- 🗃️ Text2SQL Pipeline: Translates natural language questions into SQL queries, supplemented with explanations, chain-of-thought reasoning, and contextual schema information.
- 📚 Knowlege Base Cleaning Pipeline: Extract and structure knowledge from unorganized sources like tables, PDFs, and Word documents into usable entries for downstream RAG or QA pair generation.
- 🤖 Agentic RAG Pipeline: Identify and extract QA pairs from existing QA datasets or knowledge bases that require external knowledge to answer, for use in downstream training of Agnetic RAG tasks.
In this framework, operators are categorized into Fundamental Operators, Generic Operators, Domain-Specific Operators, and Evaluation Operators, etc., supporting data processing and evaluation functionalities. Please refer to the documentation for details.
-
DataFlow Agent: An intelligent assistant that performs data analysis, writes custom
operators
, and automatically orchestrates them intopipelines
based on specific task objectives.
Please use the following commands for environment setup and installation👇
conda create -n dataflow python=3.10
conda activate dataflow
pip install open-dataflow
If you want to use your own GPU for local inference, please use:
pip install open-dataflow[vllm]
DataFlow supports Python>=3.10 environments
After installation, you can use the following command to check if dataflow has been installed correctly:
dataflow -v
If installed correctly, you should see:
open-dataflow codebase version: 1.0.0
Checking for updates...
Local version: 1.0.0
PyPI newest version: 1.0.0
You are using the latest version: 1.0.0.
DataFlow provides two interactive web interfaces to help you use operators, pipelines, and agents:
Launch the DataFlow operator interface to test and visualize all operators and pipelines:
dataflow webui
This command will start an interactive web interface, allowing you to visualize and flexibly use all operators and pipelines.
Launch the DataFlow agent interface for operator authoring and pipeline design:
dataflow webui agent
This command will start the DataFlow-Agent interface, providing automated operator authoring and pipeline recommendation services.
https://github.com/user-attachments/assets/fda1ad47-a9f3-447a-b5c0-cf4c9ad64763
Beyond the local Gradio interface, DataFlow is also available as a fully-managed SaaS solution on the ADP Intelligent Data Platform.
ADP is an end-to-end system by OriginHub, designed to help enterprises accelerate the development of custom Agents and Models by integrating Large Language Models (LLMs) with private data.
- 🤖 Automated Data Preparation: Leverage DataFlow for full-process automation of your data workflows.
- 📚 Unified Knowledge System: Integrate and manage large-scale, multimodal knowledge bases.
- 🤝 Intelligent Collaboration: Build and orchestrate powerful multi-agent systems.
- 🗄️ AI-Native Database: Manage the full lifecycle of your multimodal data with a purpose-built AI database.
👉 Sign up now to claim your free compute credits!
For detailed usage instructions and getting started guide, please visit our Documentation.
For Detailed Experiments setting, please visit our documentation.
The pre-training data processing pipeline
was applied to randomly sampled data from the RedPajama dataset, resulting in a final data retention rate of 13.65%. The analysis results using QuratingScorer
are shown in the figure. As can be seen, the filtered pretraining data significantly outperforms the original data across four scoring dimensions: writing style, requirement for expert knowledge, factual content, and educational value. This demonstrates the effectiveness of the DataFlow pretraining data processing.
We filted 3k record from alpaca
dataset and compare it with radom selected 3k data from alpaca
dataset by training it on Qwen2.5-7B. Results are:
We verify our reasoning pipeline by SFT on a Qwen2.5-32B-Instruct with Reasoning Pipeline synsthized data. We generated 1k and 5k SFT data pairs. Results are:
We fine-tuned the Qwen2.5-Coder-7B-Instruct model using both Supervised Fine-tuning (SFT) and Reinforcement Learning (RL), with data constructed via the DataFlow-Text2SQL Pipeline. Results are:
Our team has published the following papers that form core components of the DataFlow system:
Paper Title | DataFlow Component | Venue | Year |
---|---|---|---|
MM-Verify: Enhancing Multimodal Reasoning with Chain-of-Thought Verification | Multimodal reasoning verification framework for data processing and evaluation | ACL | 2025 |
Efficient Pretraining Data Selection for Language Models via Multi-Actor Collaboration | Multi-actor collaborative data selection mechanism for enhanced data filtering and processing | ACL | 2025 |
We sincerely appreciate MinerU's outstanding contribution, particularly its robust text extraction capabilities from PDFs and documents, which greatly facilitates data loading.
Join the DataFlow open-source community to ask questions, share ideas, and collaborate with other developers!
• 📮 GitHub Issues: Report bugs or suggest features
• 🔧 GitHub Pull Requests: Contribute code improvements
• 💬 Join our community groups to connect with us and other contributors!
If you use DataFlow in your research, feel free to give us a cite.
@misc{dataflow2025,
author = {DataFlow Develop Team},
title = {DataFlow: A Unified Framework for Data-Centric AI},
year = {2025},
howpublished = {\url{https://github.com/OpenDCAI/DataFlow}},
note = {Accessed: 2025-07-08}
}
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for DataFlow
Similar Open Source Tools

DataFlow
DataFlow is a data preparation and training system designed to parse, generate, process, and evaluate high-quality data from noisy sources, improving the performance of large language models in specific domains. It constructs diverse operators and pipelines, validated to enhance domain-oriented LLM's performance in fields like healthcare, finance, and law. DataFlow also features an intelligent DataFlow-agent capable of dynamically assembling new pipelines by recombining existing operators on demand.

SoM-LLaVA
SoM-LLaVA is a new data source and learning paradigm for Multimodal LLMs, empowering open-source Multimodal LLMs with Set-of-Mark prompting and improved visual reasoning ability. The repository provides a new dataset that is complementary to existing training sources, enhancing multimodal LLMs with Set-of-Mark prompting and improved general capacity. By adding 30k SoM data to the visual instruction tuning stage of LLaVA, the tool achieves 1% to 6% relative improvements on all benchmarks. Users can train SoM-LLaVA via command line and utilize the implementation to annotate COCO images with SoM. Additionally, the tool can be loaded in Huggingface for further usage.

llm-awq
AWQ (Activation-aware Weight Quantization) is a tool designed for efficient and accurate low-bit weight quantization (INT3/4) for Large Language Models (LLMs). It supports instruction-tuned models and multi-modal LMs, providing features such as AWQ search for accurate quantization, pre-computed AWQ model zoo for various LLMs, memory-efficient 4-bit linear in PyTorch, and efficient CUDA kernel implementation for fast inference. The tool enables users to run large models on resource-constrained edge platforms, delivering more efficient responses with LLM/VLM chatbots through 4-bit inference.

AIOS
AIOS, a Large Language Model (LLM) Agent operating system, embeds large language model into Operating Systems (OS) as the brain of the OS, enabling an operating system "with soul" -- an important step towards AGI. AIOS is designed to optimize resource allocation, facilitate context switch across agents, enable concurrent execution of agents, provide tool service for agents, maintain access control for agents, and provide a rich set of toolkits for LLM Agent developers.

lance
Lance is a modern columnar data format optimized for ML workflows and datasets. It offers high-performance random access, vector search, zero-copy automatic versioning, and ecosystem integrations with Apache Arrow, Pandas, Polars, and DuckDB. Lance is designed to address the challenges of the ML development cycle, providing a unified data format for collection, exploration, analytics, feature engineering, training, evaluation, deployment, and monitoring. It aims to reduce data silos and streamline the ML development process.

PPTAgent
PPTAgent is an innovative system that automatically generates presentations from documents. It employs a two-step process for quality assurance and introduces PPTEval for comprehensive evaluation. With dynamic content generation, smart reference learning, and quality assessment, PPTAgent aims to streamline presentation creation. The tool follows an analysis phase to learn from reference presentations and a generation phase to develop structured outlines and cohesive slides. PPTEval evaluates presentations based on content accuracy, visual appeal, and logical coherence.

paperless-ai
Paperless-AI is an automated document analyzer tool designed for Paperless-ngx users. It utilizes the OpenAI API and Ollama (Mistral, llama, phi 3, gemma 2) to automatically scan, analyze, and tag documents. The tool offers features such as automatic document scanning, AI-powered document analysis, automatic title and tag assignment, manual mode for analyzing documents, easy setup through a web interface, document processing dashboard, error handling, and Docker support. Users can configure the tool through a web interface and access a debug interface for monitoring and troubleshooting. Paperless-AI aims to streamline document organization and analysis processes for users with access to Paperless-ngx and AI capabilities.

kornia
Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions.

NExT-GPT
NExT-GPT is an end-to-end multimodal large language model that can process input and generate output in various combinations of text, image, video, and audio. It leverages existing pre-trained models and diffusion models with end-to-end instruction tuning. The repository contains code, data, and model weights for NExT-GPT, allowing users to work with different modalities and perform tasks like encoding, understanding, reasoning, and generating multimodal content.

rai
RAI is a framework designed to bring general multi-agent system capabilities to robots, enhancing human interactivity, flexibility in problem-solving, and out-of-the-box AI features. It supports multi-modalities, incorporates an advanced database for agent memory, provides ROS 2-oriented tooling, and offers a comprehensive task/mission orchestrator. The framework includes features such as voice interaction, customizable robot identity, camera sensor access, reasoning through ROS logs, and integration with LangChain for AI tools. RAI aims to support various AI vendors, improve human-robot interaction, provide an SDK for developers, and offer a user interface for configuration.

starwhale
Starwhale is an MLOps/LLMOps platform that brings efficiency and standardization to machine learning operations. It streamlines the model development lifecycle, enabling teams to optimize workflows around key areas like model building, evaluation, release, and fine-tuning. Starwhale abstracts Model, Runtime, and Dataset as first-class citizens, providing tailored capabilities for common workflow scenarios including Models Evaluation, Live Demo, and LLM Fine-tuning. It is an open-source platform designed for clarity and ease of use, empowering developers to build customized MLOps features tailored to their needs.

AIaW
AIaW is a next-generation LLM client with full functionality, lightweight, and extensible. It supports various basic functions such as streaming transfer, image uploading, and latex formulas. The tool is cross-platform with a responsive interface design. It supports multiple service providers like OpenAI, Anthropic, and Google. Users can modify questions, regenerate in a forked manner, and visualize conversations in a tree structure. Additionally, it offers features like file parsing, video parsing, plugin system, assistant market, local storage with real-time cloud sync, and customizable interface themes. Users can create multiple workspaces, use dynamic prompt word variables, extend plugins, and benefit from detailed design elements like real-time content preview, optimized code pasting, and support for various file types.

skypilot
SkyPilot is a framework for running LLMs, AI, and batch jobs on any cloud, offering maximum cost savings, highest GPU availability, and managed execution. SkyPilot abstracts away cloud infra burdens: - Launch jobs & clusters on any cloud - Easy scale-out: queue and run many jobs, automatically managed - Easy access to object stores (S3, GCS, R2) SkyPilot maximizes GPU availability for your jobs: * Provision in all zones/regions/clouds you have access to (the _Sky_), with automatic failover SkyPilot cuts your cloud costs: * Managed Spot: 3-6x cost savings using spot VMs, with auto-recovery from preemptions * Optimizer: 2x cost savings by auto-picking the cheapest VM/zone/region/cloud * Autostop: hands-free cleanup of idle clusters SkyPilot supports your existing GPU, TPU, and CPU workloads, with no code changes.

instill-core
Instill Core is an open-source orchestrator comprising a collection of source-available projects designed to streamline every aspect of building versatile AI features with unstructured data. It includes Instill VDP (Versatile Data Pipeline) for unstructured data, AI, and pipeline orchestration, Instill Model for scalable MLOps and LLMOps for open-source or custom AI models, and Instill Artifact for unified unstructured data management. Instill Core can be used for tasks such as building, testing, and sharing pipelines, importing, serving, fine-tuning, and monitoring ML models, and transforming documents, images, audio, and video into a unified AI-ready format.

fastRAG
fastRAG is a research framework designed to build and explore efficient retrieval-augmented generative models. It incorporates state-of-the-art Large Language Models (LLMs) and Information Retrieval to empower researchers and developers with a comprehensive tool-set for advancing retrieval augmented generation. The framework is optimized for Intel hardware, customizable, and includes key features such as optimized RAG pipelines, efficient components, and RAG-efficient components like ColBERT and Fusion-in-Decoder (FiD). fastRAG supports various unique components and backends for running LLMs, making it a versatile tool for research and development in the field of retrieval-augmented generation.

clearml
ClearML is an auto-magical suite of tools designed to streamline AI workflows. It includes modules for experiment management, MLOps/LLMOps, data management, model serving, and more. ClearML offers features like experiment tracking, model serving, orchestration, and automation. It supports various ML/DL frameworks and integrates with Jupyter Notebook and PyCharm for remote debugging. ClearML aims to simplify collaboration, automate processes, and enhance visibility in AI projects.
For similar tasks

deep-searcher
DeepSearcher is a tool that combines reasoning LLMs and Vector Databases to perform search, evaluation, and reasoning based on private data. It is suitable for enterprise knowledge management, intelligent Q&A systems, and information retrieval scenarios. The tool maximizes the utilization of enterprise internal data while ensuring data security, supports multiple embedding models, and provides support for multiple LLMs for intelligent Q&A and content generation. It also includes features like private data search, vector database management, and document loading with web crawling capabilities under development.

DataFlow
DataFlow is a data preparation and training system designed to parse, generate, process, and evaluate high-quality data from noisy sources, improving the performance of large language models in specific domains. It constructs diverse operators and pipelines, validated to enhance domain-oriented LLM's performance in fields like healthcare, finance, and law. DataFlow also features an intelligent DataFlow-agent capable of dynamically assembling new pipelines by recombining existing operators on demand.

marvin
Marvin is a lightweight AI toolkit for building natural language interfaces that are reliable, scalable, and easy to trust. Each of Marvin's tools is simple and self-documenting, using AI to solve common but complex challenges like entity extraction, classification, and generating synthetic data. Each tool is independent and incrementally adoptable, so you can use them on their own or in combination with any other library. Marvin is also multi-modal, supporting both image and audio generation as well using images as inputs for extraction and classification. Marvin is for developers who care more about _using_ AI than _building_ AI, and we are focused on creating an exceptional developer experience. Marvin users should feel empowered to bring tightly-scoped "AI magic" into any traditional software project with just a few extra lines of code. Marvin aims to merge the best practices for building dependable, observable software with the best practices for building with generative AI into a single, easy-to-use library. It's a serious tool, but we hope you have fun with it. Marvin is open-source, free to use, and made with 💙 by the team at Prefect.

data-juicer
Data-Juicer is a one-stop data processing system to make data higher-quality, juicier, and more digestible for LLMs. It is a systematic & reusable library of 80+ core OPs, 20+ reusable config recipes, and 20+ feature-rich dedicated toolkits, designed to function independently of specific LLM datasets and processing pipelines. Data-Juicer allows detailed data analyses with an automated report generation feature for a deeper understanding of your dataset. Coupled with multi-dimension automatic evaluation capabilities, it supports a timely feedback loop at multiple stages in the LLM development process. Data-Juicer offers tens of pre-built data processing recipes for pre-training, fine-tuning, en, zh, and more scenarios. It provides a speedy data processing pipeline requiring less memory and CPU usage, optimized for maximum productivity. Data-Juicer is flexible & extensible, accommodating most types of data formats and allowing flexible combinations of OPs. It is designed for simplicity, with comprehensive documentation, easy start guides and demo configs, and intuitive configuration with simple adding/removing OPs from existing configs.

ChainForge
ChainForge is a visual programming environment for battle-testing prompts to LLMs. It is geared towards early-stage, quick-and-dirty exploration of prompts, chat responses, and response quality that goes beyond ad-hoc chatting with individual LLMs. With ChainForge, you can: * Query multiple LLMs at once to test prompt ideas and variations quickly and effectively. * Compare response quality across prompt permutations, across models, and across model settings to choose the best prompt and model for your use case. * Setup evaluation metrics (scoring function) and immediately visualize results across prompts, prompt parameters, models, and model settings. * Hold multiple conversations at once across template parameters and chat models. Template not just prompts, but follow-up chat messages, and inspect and evaluate outputs at each turn of a chat conversation. ChainForge comes with a number of example evaluation flows to give you a sense of what's possible, including 188 example flows generated from benchmarks in OpenAI evals. This is an open beta of Chainforge. We support model providers OpenAI, HuggingFace, Anthropic, Google PaLM2, Azure OpenAI endpoints, and Dalai-hosted models Alpaca and Llama. You can change the exact model and individual model settings. Visualization nodes support numeric and boolean evaluation metrics. ChainForge is built on ReactFlow and Flask.

Vodalus-Expert-LLM-Forge
Vodalus Expert LLM Forge is a tool designed for crafting datasets and efficiently fine-tuning models using free open-source tools. It includes components for data generation, LLM interaction, RAG engine integration, model training, fine-tuning, and quantization. The tool is suitable for users at all levels and is accompanied by comprehensive documentation. Users can generate synthetic data, interact with LLMs, train models, and optimize performance for local execution. The tool provides detailed guides and instructions for setup, usage, and customization.

hCaptcha-Solver
hCaptcha-Solver is an AI-based hcaptcha text challenge solver that utilizes the playwright module to generate the hsw N data. It can solve any text challenge without any problem, but may be flagged on some websites like Discord. The tool requires proxies since hCaptcha also rate limits. Users can run the 'hsw_api.py' before running anything and then integrate the usage shown in 'main.py' into their projects that require hCaptcha solving. Please note that this tool only works on sites that support hCaptcha text challenge.

seahorse
A handy package for kickstarting AI contests. This Python framework simplifies the creation of an environment for adversarial agents, offering various functionalities for game setup, playing against remote agents, data generation, and contest organization. The package is user-friendly and provides easy-to-use features out of the box. Developed by an enthusiastic team of M.Sc candidates at Polytechnique Montréal, 'seahorse' is distributed under the 3-Clause BSD License.
For similar jobs

weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.

LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.

VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.

kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.

PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.

tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.

spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.

Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.