![paperless-ai](/statics/github-mark.png)
paperless-ai
An automated document analyzer for Paperless-ngx using OpenAI API, Ollama and all OpenAI API compatible Services to automatically analyze and tag your documents.
Stars: 1811
![screenshot](/screenshots_githubs/clusterzx-paperless-ai.jpg)
Paperless-AI is an automated document analyzer tool designed for Paperless-ngx users. It utilizes the OpenAI API and Ollama (Mistral, llama, phi 3, gemma 2) to automatically scan, analyze, and tag documents. The tool offers features such as automatic document scanning, AI-powered document analysis, automatic title and tag assignment, manual mode for analyzing documents, easy setup through a web interface, document processing dashboard, error handling, and Docker support. Users can configure the tool through a web interface and access a debug interface for monitoring and troubleshooting. Paperless-AI aims to streamline document organization and analysis processes for users with access to Paperless-ngx and AI capabilities.
README:
An automated document analyzer for Paperless-ngx using OpenAI API, Ollama and all OpenAI API compatible Services to automatically analyze and tag your documents.
It features: Automode, Manual Mode, Ollama and OpenAI, a Chat function to query your documents with AI, a modern and intuitive Webinterface.
Following Services and OpenAI API compatible services have been successfully tested:
- Ollama
- OpenAI
- DeepSeek.ai
- OpenRouter.ai
- Perplexity.ai
- Together.ai
- VLLM
- LiteLLM
- Fastchat
- Gemini (Google)
- ... and there are possibly many more
paperless-ai makes changes to the documents (not the content, the meta data) in your productive paperlessNGX instance that cannot be easily undone. Do the configuration carefully and think twice. Please test the results beforehand in a separate development environment and be sure to back up your documents and metadata beforehand.
Download here: https://github.com/clusterzx/paperless-ai/blob/main/paperless-ai-chrome-extension.zip
π Thank you for all your support, bug submit, feature requests π
If you upgrade from 1.x to 2.1.x or later:
- You are now forced to setup a user as the Webapp now requires authentication. I know many of you only use it in secured and encapsulated networks and don't care for authentication. But I think we all do good when we secure out data as much as possible.
- You have to set the username the token key belongs to. There were so many bugs and issues that were traced back to Documents having other user/access rights then the api key could provide.
- Thanks for listening, love ya!
- Automatic Scanning: Identifies and processes new documents within Paperless-ngx.
- AI-Powered Analysis: Leverages OpenAI API and Ollama (Mistral, Llama, Phi 3, Gemma 2) for precise document analysis.
- Metadata Assignment: Automatically assigns titles, tags, document_type and correspondent details.
- Predefined Processing Rules: Specify which documents to process based on existing tags. (Optional) π
- Selective Tag Assignment: Use only selected tags for processing. (Disables the prompt dialog) π
- Custom Tagging: Assign a specific tag (of your choice) to AI-processed documents for easy identification. π
-
AI-Assisted Analysis: Manually analyze documents with AI support in a modern web interface. (Accessible via the
/manual
endpoint) π
- Document Querying: Ask questions about your documents and receive accurate, AI-generated answers. π
-
Streamlined Configuration: Easy-to-use setup interface available at
/setup
. - Dashboard Overview: A clean and organized dashboard for monitoring and managing document processing.
- Error Handling: Automatic restarts and health monitoring for improved stability.
- Health Checks: Ensures system integrity and alerts on potential issues.
- Docker Integration: Full Docker support, including health checks, resource management, and persistent data storage.
- Docker and Docker Compose
- Access to a Paperless-ngx installation
- Cloud based LLM access (see list on top) or your own Ollama or other selfhosted LLM instance with your chosen model running and reachable.
- Basic understanding of cron syntax (for scan interval configuration)
Visit the Wiki for installation:
Click here for Installation
-
Document Discovery
- Periodically scans Paperless-ngx for new documents
- Tracks processed documents in a local SQLite database
-
AI Analysis
- Sends document content to OpenAI API or Ollama for analysis
- Extracts relevant tags and correspondent information
- Uses GPT-4o-mini or your custom Ollama model for accurate document understanding
-
Automatic Organization
- Creates new tags if they don't exist
- Creates new correspondents if they don't exist
- Updates documents with analyzed information
- Marks documents as processed to avoid duplicate analysis
You can now manually analyze your files by hand with the help of AI in a beautiful Webinterface.
Reachable via the /manual
endpoint from the webinterface.
The application can be configured through the Webinterface on the /setup
Route.
You dont need/can't set the environment vars through docker.
The application comes with full Docker support:
- Automatic container restart on failure
- Health monitoring
- Volume persistence for database
- Resource management
- Graceful shutdown handling
# Start the container
docker-compose up -d
# View logs
docker-compose logs -f
# Restart container
docker-compose restart
# Stop container
docker-compose down
# Rebuild and start
docker-compose up -d --build
The application provides a health check endpoint at /health
that returns:
# Healthy system
{
"status": "healthy"
}
# System not configured
{
"status": "not_configured",
"message": "Application setup not completed"
}
# Database error
{
"status": "database_error",
"message": "Database check failed"
}
The application includes a debug interface accessible via /debug
that helps administrators monitor and troubleshoot the system's data:
- π View all system tags
- π Inspect processed documents
- π₯ Review correspondent information
- Navigate to:
http://your-instance:3000/debug
- The interface provides:
- Interactive dropdown to select data category
- Tree view visualization of JSON responses
- Color-coded data representation
- Collapsible/expandable data nodes
Endpoint | Description |
---|---|
/debug/tags | Lists all tags in the system |
/debug/documents | Shows processed document information |
/debug/correspondents | Displays correspondent data |
The debug interface also integrates with the health check system, showing a configuration warning if the system is not properly set up.
To run the application locally without Docker:
- Install dependencies:
npm install
- Start the development server:
npm run test
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature
) - Commit your changes (
git commit -m 'Add some AmazingFeature'
) - Push to the branch (
git push origin feature/AmazingFeature
) - Open a Pull Request
- Store API keys securely
- Restrict container access
- Monitor API usage
- Regularly update dependencies
- Back up your database
This project is licensed under the MIT License - see the LICENSE file for details.
- Paperless-ngx for the amazing document management system
- OpenAI API
- The Express.js and Node.js communities for their excellent tools
If you encounter any issues or have questions:
- Check the Issues section
- Create a new issue if yours isn't already listed
- Provide detailed information about your setup and the problem
- [x] Support for custom AI models
- [x] Support for multiple language analysis
- [x] Advanced tag matching algorithms
- [ ] Custom rules for document processing
- [ ] Enhanced web interface with statistics
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for paperless-ai
Similar Open Source Tools
![paperless-ai Screenshot](/screenshots_githubs/clusterzx-paperless-ai.jpg)
paperless-ai
Paperless-AI is an automated document analyzer tool designed for Paperless-ngx users. It utilizes the OpenAI API and Ollama (Mistral, llama, phi 3, gemma 2) to automatically scan, analyze, and tag documents. The tool offers features such as automatic document scanning, AI-powered document analysis, automatic title and tag assignment, manual mode for analyzing documents, easy setup through a web interface, document processing dashboard, error handling, and Docker support. Users can configure the tool through a web interface and access a debug interface for monitoring and troubleshooting. Paperless-AI aims to streamline document organization and analysis processes for users with access to Paperless-ngx and AI capabilities.
![CursorLens Screenshot](/screenshots_githubs/HamedMP-CursorLens.jpg)
CursorLens
Cursor Lens is an open-source tool that acts as a proxy between Cursor and various AI providers, logging interactions and providing detailed analytics to help developers optimize their use of AI in their coding workflow. It supports multiple AI providers, captures and logs all requests, provides visual analytics on AI usage, allows users to set up and switch between different AI configurations, offers real-time monitoring of AI interactions, tracks token usage, estimates costs based on token usage and model pricing. Built with Next.js, React, PostgreSQL, Prisma ORM, Vercel AI SDK, Tailwind CSS, and shadcn/ui components.
![Easy-Voice-Toolkit Screenshot](/screenshots_githubs/Spr-Aachen-Easy-Voice-Toolkit.jpg)
Easy-Voice-Toolkit
Easy Voice Toolkit is a toolkit based on open source voice projects, providing automated audio tools including speech model training. Users can seamlessly integrate functions like audio processing, voice recognition, voice transcription, dataset creation, model training, and voice conversion to transform raw audio files into ideal speech models. The toolkit supports multiple languages and is currently only compatible with Windows systems. It acknowledges the contributions of various projects and offers local deployment options for both users and developers. Additionally, cloud deployment on Google Colab is available. The toolkit has been tested on Windows OS devices and includes a FAQ section and terms of use for academic exchange purposes.
![ai-driven-dev-community Screenshot](/screenshots_githubs/alexsoyes-ai-driven-dev-community.jpg)
ai-driven-dev-community
AI Driven Dev Community is a repository aimed at helping developers become more efficient by utilizing AI tools in their daily coding tasks. It provides a collection of tools, prompts, snippets, and agents for developers to integrate AI into their workflow. The repository is regularly updated with new resources and focuses on best practices for using AI in development work. Users can find tools like Espanso, ChatGPT, GitHub Copilot, and VSCode recommended for enhancing their coding experience. Additionally, the repository offers guidance on customizing AI for developers, installing AI toolbox for software engineers, and contributing to the community through easy steps.
![Director Screenshot](/screenshots_githubs/video-db-Director.jpg)
Director
Director is a framework to build video agents that can reason through complex video tasks like search, editing, compilation, generation, etc. It enables users to summarize videos, search for specific moments, create clips instantly, integrate GenAI projects and APIs, add overlays, generate thumbnails, and more. Built on VideoDB's 'video-as-data' infrastructure, Director is perfect for developers, creators, and teams looking to simplify media workflows and unlock new possibilities.
![swark Screenshot](/screenshots_githubs/swark-io-swark.jpg)
swark
Swark is a VS Code extension that automatically generates architecture diagrams from code using large language models (LLMs). It is directly integrated with GitHub Copilot, requires no authentication or API key, and supports all languages. Swark helps users learn new codebases, review AI-generated code, improve documentation, understand legacy code, spot design flaws, and gain test coverage insights. It saves output in a 'swark-output' folder with diagram and log files. Source code is only shared with GitHub Copilot for privacy. The extension settings allow customization for file reading, file extensions, exclusion patterns, and language model selection. Swark is open source under the GNU Affero General Public License v3.0.
![kollektiv Screenshot](/screenshots_githubs/alexander-zuev-kollektiv.jpg)
kollektiv
Kollektiv is a Retrieval-Augmented Generation (RAG) system designed to enable users to chat with their favorite documentation easily. It aims to provide LLMs with access to the most up-to-date knowledge, reducing inaccuracies and improving productivity. The system utilizes intelligent web crawling, advanced document processing, vector search, multi-query expansion, smart re-ranking, AI-powered responses, and dynamic system prompts. The technical stack includes Python/FastAPI for backend, Supabase, ChromaDB, and Redis for storage, OpenAI and Anthropic Claude 3.5 Sonnet for AI/ML, and Chainlit for UI. Kollektiv is licensed under a modified version of the Apache License 2.0, allowing free use for non-commercial purposes.
![R2R Screenshot](/screenshots_githubs/SciPhi-AI-R2R.jpg)
R2R
R2R (RAG to Riches) is a fast and efficient framework for serving high-quality Retrieval-Augmented Generation (RAG) to end users. The framework is designed with customizable pipelines and a feature-rich FastAPI implementation, enabling developers to quickly deploy and scale RAG-based applications. R2R was conceived to bridge the gap between local LLM experimentation and scalable production solutions. **R2R is to LangChain/LlamaIndex what NextJS is to React**. A JavaScript client for R2R deployments can be found here. ### Key Features * **π Deploy** : Instantly launch production-ready RAG pipelines with streaming capabilities. * **𧩠Customize** : Tailor your pipeline with intuitive configuration files. * **π Extend** : Enhance your pipeline with custom code integrations. * **βοΈ Autoscale** : Scale your pipeline effortlessly in the cloud using SciPhi. * **π€ OSS** : Benefit from a framework developed by the open-source community, designed to simplify RAG deployment.
![rowfill Screenshot](/screenshots_githubs/harishdeivanayagam-rowfill.jpg)
rowfill
Rowfill is an open-source document processing platform designed for knowledge workers. It offers advanced AI capabilities to extract, analyze, and process data from complex documents, images, and PDFs. The platform features advanced OCR and processing functionalities, auto-schema generation, and custom actions for creating tailored workflows. It prioritizes privacy and security by supporting Local LLMs like Llama and Mistral, syncing with company data while maintaining privacy, and being open source with AGPLv3 licensing. Rowfill is a versatile tool that aims to streamline document processing tasks for users in various industries.
![TaskingAI Screenshot](/screenshots_githubs/TaskingAI-TaskingAI.jpg)
TaskingAI
TaskingAI brings Firebase's simplicity to **AI-native app development**. The platform enables the creation of GPTs-like multi-tenant applications using a wide range of LLMs from various providers. It features distinct, modular functions such as Inference, Retrieval, Assistant, and Tool, seamlessly integrated to enhance the development process. TaskingAIβs cohesive design ensures an efficient, intelligent, and user-friendly experience in AI application development.
![eole Screenshot](/screenshots_githubs/eole-nlp-eole.jpg)
eole
EOLE is an open language modeling toolkit based on PyTorch. It aims to provide a research-friendly approach with a comprehensive yet compact and modular codebase for experimenting with various types of language models. The toolkit includes features such as versatile training and inference, dynamic data transforms, comprehensive large language model support, advanced quantization, efficient finetuning, flexible inference, and tensor parallelism. EOLE is a work in progress with ongoing enhancements in configuration management, command line entry points, reproducible recipes, core API simplification, and plans for further simplification, refactoring, inference server development, additional recipes, documentation enhancement, test coverage improvement, logging enhancements, and broader model support.
![minimal-chat Screenshot](/screenshots_githubs/fingerthief-minimal-chat.jpg)
minimal-chat
MinimalChat is a minimal and lightweight open-source chat application with full mobile PWA support that allows users to interact with various language models, including GPT-4 Omni, Claude Opus, and various Local/Custom Model Endpoints. It focuses on simplicity in setup and usage while being fully featured and highly responsive. The application supports features like fully voiced conversational interactions, multiple language models, markdown support, code syntax highlighting, DALL-E 3 integration, conversation importing/exporting, and responsive layout for mobile use.
![extensionOS Screenshot](/screenshots_githubs/albertocubeddu-extensionOS.jpg)
extensionOS
Extension | OS is an open-source browser extension that brings AI directly to users' web browsers, allowing them to access powerful models like LLMs seamlessly. Users can create prompts, fix grammar, and access intelligent assistance without switching tabs. The extension aims to revolutionize online information interaction by integrating AI into everyday browsing experiences. It offers features like Prompt Factory for tailored prompts, seamless LLM model access, secure API key storage, and a Mixture of Agents feature. The extension was developed to empower users to unleash their creativity with custom prompts and enhance their browsing experience with intelligent assistance.
![llm-answer-engine Screenshot](/screenshots_githubs/developersdigest-llm-answer-engine.jpg)
llm-answer-engine
This repository contains the code and instructions needed to build a sophisticated answer engine that leverages the capabilities of Groq, Mistral AI's Mixtral, Langchain.JS, Brave Search, Serper API, and OpenAI. Designed to efficiently return sources, answers, images, videos, and follow-up questions based on user queries, this project is an ideal starting point for developers interested in natural language processing and search technologies.
![Local-File-Organizer Screenshot](/screenshots_githubs/QiuYannnn-Local-File-Organizer.jpg)
Local-File-Organizer
The Local File Organizer is an AI-powered tool designed to help users organize their digital files efficiently and securely on their local device. By leveraging advanced AI models for text and visual content analysis, the tool automatically scans and categorizes files, generates relevant descriptions and filenames, and organizes them into a new directory structure. All AI processing occurs locally using the Nexa SDK, ensuring privacy and security. With support for multiple file types and customizable prompts, this tool aims to simplify file management and bring order to users' digital lives.
![Auto-Analyst Screenshot](/screenshots_githubs/ArslanS1997-Auto-Analyst.jpg)
Auto-Analyst
Auto-Analyst is an AI-driven data analytics agentic system designed to simplify and enhance the data science process. By integrating various specialized AI agents, this tool aims to make complex data analysis tasks more accessible and efficient for data analysts and scientists. Auto-Analyst provides a streamlined approach to data preprocessing, statistical analysis, machine learning, and visualization, all within an interactive Streamlit interface. It offers plug and play Streamlit UI, agents with data science speciality, complete automation, LLM agnostic operation, and is built using lightweight frameworks.
For similar tasks
![document-ai-samples Screenshot](/screenshots_githubs/GoogleCloudPlatform-document-ai-samples.jpg)
document-ai-samples
The Google Cloud Document AI Samples repository contains code samples and Community Samples demonstrating how to analyze, classify, and search documents using Google Cloud Document AI. It includes various projects showcasing different functionalities such as integrating with Google Drive, processing documents using Python, content moderation with Dialogflow CX, fraud detection, language extraction, paper summarization, tax processing pipeline, and more. The repository also provides access to test document files stored in a publicly-accessible Google Cloud Storage Bucket. Additionally, there are codelabs available for optical character recognition (OCR), form parsing, specialized processors, and managing Document AI processors. Community samples, like the PDF Annotator Sample, are also included. Contributions are welcome, and users can seek help or report issues through the repository's issues page. Please note that this repository is not an officially supported Google product and is intended for demonstrative purposes only.
![step-free-api Screenshot](/screenshots_githubs/LLM-Red-Team-step-free-api.jpg)
step-free-api
The StepChat Free service provides high-speed streaming output, multi-turn dialogue support, online search support, long document interpretation, and image parsing. It offers zero-configuration deployment, multi-token support, and automatic session trace cleaning. It is fully compatible with the ChatGPT interface. Additionally, it provides seven other free APIs for various services. The repository includes a disclaimer about using reverse APIs and encourages users to avoid commercial use to prevent service pressure on the official platform. It offers online testing links, showcases different demos, and provides deployment guides for Docker, Docker-compose, Render, Vercel, and native deployments. The repository also includes information on using multiple accounts, optimizing Nginx reverse proxy, and checking the liveliness of refresh tokens.
![unilm Screenshot](/screenshots_githubs/microsoft-unilm.jpg)
unilm
The 'unilm' repository is a collection of tools, models, and architectures for Foundation Models and General AI, focusing on tasks such as NLP, MT, Speech, Document AI, and Multimodal AI. It includes various pre-trained models, such as UniLM, InfoXLM, DeltaLM, MiniLM, AdaLM, BEiT, LayoutLM, WavLM, VALL-E, and more, designed for tasks like language understanding, generation, translation, vision, speech, and multimodal processing. The repository also features toolkits like s2s-ft for sequence-to-sequence fine-tuning and Aggressive Decoding for efficient sequence-to-sequence decoding. Additionally, it offers applications like TrOCR for OCR, LayoutReader for reading order detection, and XLM-T for multilingual NMT.
![searchGPT Screenshot](/screenshots_githubs/michaelthwan-searchGPT.jpg)
searchGPT
searchGPT is an open-source project that aims to build a search engine based on Large Language Model (LLM) technology to provide natural language answers. It supports web search with real-time results, file content search, and semantic search from sources like the Internet. The tool integrates LLM technologies such as OpenAI and GooseAI, and offers an easy-to-use frontend user interface. The project is designed to provide grounded answers by referencing real-time factual information, addressing the limitations of LLM's training data. Contributions, especially from frontend developers, are welcome under the MIT License.
![LLMs-at-DoD Screenshot](/screenshots_githubs/deptofdefense-LLMs-at-DoD.jpg)
LLMs-at-DoD
This repository contains tutorials for using Large Language Models (LLMs) in the U.S. Department of Defense. The tutorials utilize open-source frameworks and LLMs, allowing users to run them in their own cloud environments. The repository is maintained by the Defense Digital Service and welcomes contributions from users.
![LARS Screenshot](/screenshots_githubs/abgulati-LARS.jpg)
LARS
LARS is an application that enables users to run Large Language Models (LLMs) locally on their devices, upload their own documents, and engage in conversations where the LLM grounds its responses with the uploaded content. The application focuses on Retrieval Augmented Generation (RAG) to increase accuracy and reduce AI-generated inaccuracies. LARS provides advanced citations, supports various file formats, allows follow-up questions, provides full chat history, and offers customization options for LLM settings. Users can force enable or disable RAG, change system prompts, and tweak advanced LLM settings. The application also supports GPU-accelerated inferencing, multiple embedding models, and text extraction methods. LARS is open-source and aims to be the ultimate RAG-centric LLM application.
![EAGLE Screenshot](/screenshots_githubs/NVlabs-EAGLE.jpg)
EAGLE
Eagle is a family of Vision-Centric High-Resolution Multimodal LLMs that enhance multimodal LLM perception using a mix of vision encoders and various input resolutions. The model features a channel-concatenation-based fusion for vision experts with different architectures and knowledge, supporting up to over 1K input resolution. It excels in resolution-sensitive tasks like optical character recognition and document understanding.
![erag Screenshot](/screenshots_githubs/EdwardDali-erag.jpg)
erag
ERAG is an advanced system that combines lexical, semantic, text, and knowledge graph searches with conversation context to provide accurate and contextually relevant responses. This tool processes various document types, creates embeddings, builds knowledge graphs, and uses this information to answer user queries intelligently. It includes modules for interacting with web content, GitHub repositories, and performing exploratory data analysis using various language models.
For similar jobs
![sweep Screenshot](/screenshots_githubs/sweepai-sweep.jpg)
sweep
Sweep is an AI junior developer that turns bugs and feature requests into code changes. It automatically handles developer experience improvements like adding type hints and improving test coverage.
![teams-ai Screenshot](/screenshots_githubs/microsoft-teams-ai.jpg)
teams-ai
The Teams AI Library is a software development kit (SDK) that helps developers create bots that can interact with Teams and Microsoft 365 applications. It is built on top of the Bot Framework SDK and simplifies the process of developing bots that interact with Teams' artificial intelligence capabilities. The SDK is available for JavaScript/TypeScript, .NET, and Python.
![ai-guide Screenshot](/screenshots_githubs/Crataco-ai-guide.jpg)
ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.
![classifai Screenshot](/screenshots_githubs/10up-classifai.jpg)
classifai
Supercharge WordPress Content Workflows and Engagement with Artificial Intelligence. Tap into leading cloud-based services like OpenAI, Microsoft Azure AI, Google Gemini and IBM Watson to augment your WordPress-powered websites. Publish content faster while improving SEO performance and increasing audience engagement. ClassifAI integrates Artificial Intelligence and Machine Learning technologies to lighten your workload and eliminate tedious tasks, giving you more time to create original content that matters.
![chatbot-ui Screenshot](/screenshots_githubs/mckaywrigley-chatbot-ui.jpg)
chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.
![BricksLLM Screenshot](/screenshots_githubs/bricks-cloud-BricksLLM.jpg)
BricksLLM
BricksLLM is a cloud native AI gateway written in Go. Currently, it provides native support for OpenAI, Anthropic, Azure OpenAI and vLLM. BricksLLM aims to provide enterprise level infrastructure that can power any LLM production use cases. Here are some use cases for BricksLLM: * Set LLM usage limits for users on different pricing tiers * Track LLM usage on a per user and per organization basis * Block or redact requests containing PIIs * Improve LLM reliability with failovers, retries and caching * Distribute API keys with rate limits and cost limits for internal development/production use cases * Distribute API keys with rate limits and cost limits for students
![uAgents Screenshot](/screenshots_githubs/fetchai-uAgents.jpg)
uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.
![griptape Screenshot](/screenshots_githubs/griptape-ai-griptape.jpg)
griptape
Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. Griptape's core components include Structures (Agents, Pipelines, and Workflows), Tasks, Tools, Memory (Conversation Memory, Task Memory, and Meta Memory), Drivers (Prompt and Embedding Drivers, Vector Store Drivers, Image Generation Drivers, Image Query Drivers, SQL Drivers, Web Scraper Drivers, and Conversation Memory Drivers), Engines (Query Engines, Extraction Engines, Summary Engines, Image Generation Engines, and Image Query Engines), and additional components (Rulesets, Loaders, Artifacts, Chunkers, and Tokenizers). Griptape enables developers to create AI-powered applications with ease and efficiency.