
js-genai
TypeScript/JavaScript SDK for Gemini and Vertex AI.
Stars: 1071

The Google Gen AI JavaScript SDK is an experimental SDK for TypeScript and JavaScript developers to build applications powered by Gemini. It supports both the Gemini Developer API and Vertex AI. The SDK is designed to work with Gemini 2.0 features. Users can access API features through the GoogleGenAI classes, which provide submodules for querying models, managing caches, creating chats, uploading files, and starting live sessions. The SDK also allows for function calling to interact with external systems. Users can find more samples in the GitHub samples directory.
README:
Documentation: https://googleapis.github.io/js-genai/
The Google Gen AI JavaScript SDK is designed for TypeScript and JavaScript developers to build applications powered by Gemini. The SDK supports both the Gemini Developer API and Vertex AI.
The Google Gen AI SDK is designed to work with Gemini 2.0 features.
[!CAUTION] API Key Security: Avoid exposing API keys in client-side code. Use server-side implementations in production environments.
- Node.js version 20 or later
-
Configure authentication for your project.
- Install the gcloud CLI.
- Initialize the gcloud CLI.
- Create local authentication credentials for your user account:
gcloud auth application-default login
A list of accepted authentication options are listed in GoogleAuthOptions interface of google-auth-library-node.js GitHub repo.
To install the SDK, run the following command:
npm install @google/genai
The simplest way to get started is to use an API key from Google AI Studio:
import {GoogleGenAI} from '@google/genai';
const GEMINI_API_KEY = process.env.GEMINI_API_KEY;
const ai = new GoogleGenAI({apiKey: GEMINI_API_KEY});
async function main() {
const response = await ai.models.generateContent({
model: 'gemini-2.0-flash-001',
contents: 'Why is the sky blue?',
});
console.log(response.text);
}
main();
The Google Gen AI SDK provides support for both the Google AI Studio and Vertex AI implementations of the Gemini API.
For server-side applications, initialize using an API key, which can be acquired from Google AI Studio:
import { GoogleGenAI } from '@google/genai';
const ai = new GoogleGenAI({apiKey: 'GEMINI_API_KEY'});
[!CAUTION] API Key Security: Avoid exposing API keys in client-side code. Use server-side implementations in production environments.
In the browser the initialization code is identical:
import { GoogleGenAI } from '@google/genai';
const ai = new GoogleGenAI({apiKey: 'GEMINI_API_KEY'});
Sample code for VertexAI initialization:
import { GoogleGenAI } from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: 'your_project',
location: 'your_location',
});
For NodeJS environments, you can create a client by configuring the necessary environment variables. Configuration setup instructions depends on whether you're using the Gemini Developer API or the Gemini API in Vertex AI.
Gemini Developer API: Set GOOGLE_API_KEY
as shown below:
export GOOGLE_API_KEY='your-api-key'
Gemini API on Vertex AI: Set GOOGLE_GENAI_USE_VERTEXAI
,
GOOGLE_CLOUD_PROJECT
and GOOGLE_CLOUD_LOCATION
, as shown below:
export GOOGLE_GENAI_USE_VERTEXAI=true
export GOOGLE_CLOUD_PROJECT='your-project-id'
export GOOGLE_CLOUD_LOCATION='us-central1'
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI();
By default, the SDK uses the beta API endpoints provided by Google to support
preview features in the APIs. The stable API endpoints can be selected by
setting the API version to v1
.
To set the API version use apiVersion
. For example, to set the API version to
v1
for Vertex AI:
const ai = new GoogleGenAI({
vertexai: true,
project: 'your_project',
location: 'your_location',
apiVersion: 'v1'
});
To set the API version to v1alpha
for the Gemini Developer API:
const ai = new GoogleGenAI({
apiKey: 'GEMINI_API_KEY',
apiVersion: 'v1alpha'
});
All API features are accessed through an instance of the GoogleGenAI
classes.
The submodules bundle together related API methods:
-
ai.models
: Usemodels
to query models (generateContent
,generateImages
, ...), or examine their metadata. -
ai.caches
: Create and managecaches
to reduce costs when repeatedly using the same large prompt prefix. -
ai.chats
: Create local statefulchat
objects to simplify multi turn interactions. -
ai.files
: Uploadfiles
to the API and reference them in your prompts. This reduces bandwidth if you use a file many times, and handles files too large to fit inline with your prompt. -
ai.live
: Start alive
session for real time interaction, allows text + audio + video input, and text or audio output.
More samples can be found in the github samples directory.
For quicker, more responsive API interactions use the generateContentStream
method which yields chunks as they're generated:
import {GoogleGenAI} from '@google/genai';
const GEMINI_API_KEY = process.env.GEMINI_API_KEY;
const ai = new GoogleGenAI({apiKey: GEMINI_API_KEY});
async function main() {
const response = await ai.models.generateContentStream({
model: 'gemini-2.0-flash-001',
contents: 'Write a 100-word poem.',
});
for await (const chunk of response) {
console.log(chunk.text);
}
}
main();
To let Gemini to interact with external systems, you can provide
functionDeclaration
objects as tools
. To use these tools it's a 4 step
- Declare the function name, description, and parametersJsonSchema
- Call
generateContent
with function calling enabled - Use the returned
FunctionCall
parameters to call your actual function - Send the result back to the model (with history, easier in
ai.chat
) as aFunctionResponse
import {GoogleGenAI, FunctionCallingConfigMode, FunctionDeclaration, Type} from '@google/genai';
const GEMINI_API_KEY = process.env.GEMINI_API_KEY;
async function main() {
const controlLightDeclaration: FunctionDeclaration = {
name: 'controlLight',
parametersJsonSchema: {
type: 'object',
properties:{
brightness: {
type:'number',
},
colorTemperature: {
type:'string',
},
},
required: ['brightness', 'colorTemperature'],
},
};
const ai = new GoogleGenAI({apiKey: GEMINI_API_KEY});
const response = await ai.models.generateContent({
model: 'gemini-2.0-flash-001',
contents: 'Dim the lights so the room feels cozy and warm.',
config: {
toolConfig: {
functionCallingConfig: {
// Force it to call any function
mode: FunctionCallingConfigMode.ANY,
allowedFunctionNames: ['controlLight'],
}
},
tools: [{functionDeclarations: [controlLightDeclaration]}]
}
});
console.log(response.functionCalls);
}
main();
Built-in MCP support is an experimental feature. You can pass a local MCP server as a tool directly.
import { GoogleGenAI, FunctionCallingConfigMode , mcpToTool} from '@google/genai';
import { Client } from "@modelcontextprotocol/sdk/client/index.js";
import { StdioClientTransport } from "@modelcontextprotocol/sdk/client/stdio.js";
// Create server parameters for stdio connection
const serverParams = new StdioClientTransport({
command: "npx", // Executable
args: ["-y", "@philschmid/weather-mcp"] // MCP Server
});
const client = new Client(
{
name: "example-client",
version: "1.0.0"
}
);
// Configure the client
const ai = new GoogleGenAI({});
// Initialize the connection between client and server
await client.connect(serverParams);
// Send request to the model with MCP tools
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: `What is the weather in London in ${new Date().toLocaleDateString()}?`,
config: {
tools: [mcpToTool(client)], // uses the session, will automatically call the tool using automatic function calling
},
});
console.log(response.text);
// Close the connection
await client.close();
The SDK allows you to specify the following types in the contents
parameter:
-
Content
: The SDK will wrap the singularContent
instance in an array which contains only the given content instance -
Content[]
: No transformation happens
Parts will be aggregated on a singular Content, with role 'user'.
-
Part | string
: The SDK will wrap thestring
orPart
in aContent
instance with role 'user'. -
Part[] | string[]
: The SDK will wrap the full provided list into a singleContent
with role 'user'.
NOTE: This doesn't apply to FunctionCall
and FunctionResponse
parts,
if you are specifying those, you need to explicitly provide the full
Content[]
structure making it explicit which Parts are 'spoken' by the model,
or the user. The SDK will throw an exception if you try this.
To handle errors raised by the API, the SDK provides this ApiError class.
import {GoogleGenAI} from '@google/genai';
const GEMINI_API_KEY = process.env.GEMINI_API_KEY;
const ai = new GoogleGenAI({apiKey: GEMINI_API_KEY});
async function main() {
await ai.models.generateContent({
model: 'non-existent-model',
contents: 'Write a 100-word poem.',
}).catch((e) => {
console.error('error name: ', e.name);
console.error('error message: ', e.message);
console.error('error status: ', e.status);
});
}
main();
This SDK (@google/genai
) is Google Deepmind’s "vanilla" SDK for its generative
AI offerings, and is where Google Deepmind adds new AI features.
Models hosted either on the Vertex AI platform or the Gemini Developer platform are accessible through this SDK.
Other SDKs may be offering additional AI frameworks on top of this SDK, or may be targeting specific project environments (like Firebase).
The @google/generative_language
and @google-cloud/vertexai
SDKs are previous
iterations of this SDK and are no longer receiving new Gemini 2.0+ features.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for js-genai
Similar Open Source Tools

js-genai
The Google Gen AI JavaScript SDK is an experimental SDK for TypeScript and JavaScript developers to build applications powered by Gemini. It supports both the Gemini Developer API and Vertex AI. The SDK is designed to work with Gemini 2.0 features. Users can access API features through the GoogleGenAI classes, which provide submodules for querying models, managing caches, creating chats, uploading files, and starting live sessions. The SDK also allows for function calling to interact with external systems. Users can find more samples in the GitHub samples directory.

client-js
The Mistral JavaScript client is a library that allows you to interact with the Mistral AI API. With this client, you can perform various tasks such as listing models, chatting with streaming, chatting without streaming, and generating embeddings. To use the client, you can install it in your project using npm and then set up the client with your API key. Once the client is set up, you can use it to perform the desired tasks. For example, you can use the client to chat with a model by providing a list of messages. The client will then return the response from the model. You can also use the client to generate embeddings for a given input. The embeddings can then be used for various downstream tasks such as clustering or classification.

nuxt-llms
Nuxt LLMs automatically generates llms.txt markdown documentation for Nuxt applications. It provides runtime hooks to collect data from various sources and generate structured documentation. The tool allows customization of sections directly from nuxt.config.ts and integrates with Nuxt modules via the runtime hooks system. It generates two documentation formats: llms.txt for concise structured documentation and llms_full.txt for detailed documentation. Users can extend documentation using hooks to add sections, links, and metadata. The tool is suitable for developers looking to automate documentation generation for their Nuxt applications.

deepgram-js-sdk
Deepgram JavaScript SDK. Power your apps with world-class speech and Language AI models.

python-tgpt
Python-tgpt is a Python package that enables seamless interaction with over 45 free LLM providers without requiring an API key. It also provides image generation capabilities. The name _python-tgpt_ draws inspiration from its parent project tgpt, which operates on Golang. Through this Python adaptation, users can effortlessly engage with a number of free LLMs available, fostering a smoother AI interaction experience.

model.nvim
model.nvim is a tool designed for Neovim users who want to utilize AI models for completions or chat within their text editor. It allows users to build prompts programmatically with Lua, customize prompts, experiment with multiple providers, and use both hosted and local models. The tool supports features like provider agnosticism, programmatic prompts in Lua, async and multistep prompts, streaming completions, and chat functionality in 'mchat' filetype buffer. Users can customize prompts, manage responses, and context, and utilize various providers like OpenAI ChatGPT, Google PaLM, llama.cpp, ollama, and more. The tool also supports treesitter highlights and folds for chat buffers.

react-native-vercel-ai
Run Vercel AI package on React Native, Expo, Web and Universal apps. Currently React Native fetch API does not support streaming which is used as a default on Vercel AI. This package enables you to use AI library on React Native but the best usage is when used on Expo universal native apps. On mobile you get back responses without streaming with the same API of `useChat` and `useCompletion` and on web it will fallback to `ai/react`

monacopilot
Monacopilot is a powerful and customizable AI auto-completion plugin for the Monaco Editor. It supports multiple AI providers such as Anthropic, OpenAI, Groq, and Google, providing real-time code completions with an efficient caching system. The plugin offers context-aware suggestions, customizable completion behavior, and framework agnostic features. Users can also customize the model support and trigger completions manually. Monacopilot is designed to enhance coding productivity by providing accurate and contextually appropriate completions in daily spoken language.

dexter
Dexter is a set of mature LLM tools used in production at Dexa, with a focus on real-world RAG (Retrieval Augmented Generation). It is a production-quality RAG that is extremely fast and minimal, and handles caching, throttling, and batching for ingesting large datasets. It also supports optional hybrid search with SPLADE embeddings, and is a minimal TS package with full typing that uses `fetch` everywhere and supports Node.js 18+, Deno, Cloudflare Workers, Vercel edge functions, etc. Dexter has full docs and includes examples for basic usage, caching, Redis caching, AI function, AI runner, and chatbot.

shortest
Shortest is an AI-powered natural language end-to-end testing framework built on Playwright. It provides a seamless testing experience by allowing users to write tests in natural language and execute them using Anthropic Claude API. The framework also offers GitHub integration with 2FA support, making it suitable for testing web applications with complex authentication flows. Shortest simplifies the testing process by enabling users to run tests locally or in CI/CD pipelines, ensuring the reliability and efficiency of web applications.

IntelliNode
IntelliNode is a javascript module that integrates cutting-edge AI models like ChatGPT, LLaMA, WaveNet, Gemini, and Stable diffusion into projects. It offers functions for generating text, speech, and images, as well as semantic search, multi-model evaluation, and chatbot capabilities. The module provides a wrapper layer for low-level model access, a controller layer for unified input handling, and a function layer for abstract functionality tailored to various use cases.

lollms
LoLLMs Server is a text generation server based on large language models. It provides a Flask-based API for generating text using various pre-trained language models. This server is designed to be easy to install and use, allowing developers to integrate powerful text generation capabilities into their applications.

syncode
SynCode is a novel framework for the grammar-guided generation of Large Language Models (LLMs) that ensures syntactically valid output based on a Context-Free Grammar (CFG). It supports various programming languages like Python, Go, SQL, Math, JSON, and more. Users can define custom grammars using EBNF syntax. SynCode offers fast generation, seamless integration with HuggingFace Language Models, and the ability to sample with different decoding strategies.

syncode
SynCode is a novel framework for the grammar-guided generation of Large Language Models (LLMs) that ensures syntactically valid output with respect to defined Context-Free Grammar (CFG) rules. It supports general-purpose programming languages like Python, Go, SQL, JSON, and more, allowing users to define custom grammars using EBNF syntax. The tool compares favorably to other constrained decoders and offers features like fast grammar-guided generation, compatibility with HuggingFace Language Models, and the ability to work with various decoding strategies.

suno-api
Suno AI API is an open-source project that allows developers to integrate the music generation capabilities of Suno.ai into their own applications. The API provides a simple and convenient way to generate music, lyrics, and other audio content using Suno.ai's powerful AI models. With Suno AI API, developers can easily add music generation functionality to their apps, websites, and other projects.

auto-playwright
Auto Playwright is a tool that allows users to run Playwright tests using AI. It eliminates the need for selectors by determining actions at runtime based on plain-text instructions. Users can automate complex scenarios, write tests concurrently with or before functionality development, and benefit from rapid test creation. The tool supports various Playwright actions and offers additional options for debugging and customization. It uses HTML sanitization to reduce costs and improve text quality when interacting with the OpenAI API.
For similar tasks

js-genai
The Google Gen AI JavaScript SDK is an experimental SDK for TypeScript and JavaScript developers to build applications powered by Gemini. It supports both the Gemini Developer API and Vertex AI. The SDK is designed to work with Gemini 2.0 features. Users can access API features through the GoogleGenAI classes, which provide submodules for querying models, managing caches, creating chats, uploading files, and starting live sessions. The SDK also allows for function calling to interact with external systems. Users can find more samples in the GitHub samples directory.

floneum
Floneum is a graph editor that makes it easy to develop your own AI workflows. It uses large language models (LLMs) to run AI models locally, without any external dependencies or even a GPU. This makes it easy to use LLMs with your own data, without worrying about privacy. Floneum also has a plugin system that allows you to improve the performance of LLMs and make them work better for your specific use case. Plugins can be used in any language that supports web assembly, and they can control the output of LLMs with a process similar to JSONformer or guidance.

llm-answer-engine
This repository contains the code and instructions needed to build a sophisticated answer engine that leverages the capabilities of Groq, Mistral AI's Mixtral, Langchain.JS, Brave Search, Serper API, and OpenAI. Designed to efficiently return sources, answers, images, videos, and follow-up questions based on user queries, this project is an ideal starting point for developers interested in natural language processing and search technologies.

discourse-ai
Discourse AI is a plugin for the Discourse forum software that uses artificial intelligence to improve the user experience. It can automatically generate content, moderate posts, and answer questions. This can free up moderators and administrators to focus on other tasks, and it can help to create a more engaging and informative community.

Gemini-API
Gemini-API is a reverse-engineered asynchronous Python wrapper for Google Gemini web app (formerly Bard). It provides features like persistent cookies, ImageFx support, extension support, classified outputs, official flavor, and asynchronous operation. The tool allows users to generate contents from text or images, have conversations across multiple turns, retrieve images in response, generate images with ImageFx, save images to local files, use Gemini extensions, check and switch reply candidates, and control log level.

genai-for-marketing
This repository provides a deployment guide for utilizing Google Cloud's Generative AI tools in marketing scenarios. It includes step-by-step instructions, examples of crafting marketing materials, and supplementary Jupyter notebooks. The demos cover marketing insights, audience analysis, trendspotting, content search, content generation, and workspace integration. Users can access and visualize marketing data, analyze trends, improve search experience, and generate compelling content. The repository structure includes backend APIs, frontend code, sample notebooks, templates, and installation scripts.

generative-ai-dart
The Google Generative AI SDK for Dart enables developers to utilize cutting-edge Large Language Models (LLMs) for creating language applications. It provides access to the Gemini API for generating content using state-of-the-art models. Developers can integrate the SDK into their Dart or Flutter applications to leverage powerful AI capabilities. It is recommended to use the SDK for server-side API calls to ensure the security of API keys and protect against potential key exposure in mobile or web apps.

Dough
Dough is a tool for crafting videos with AI, allowing users to guide video generations with precision using images and example videos. Users can create guidance frames, assemble shots, and animate them by defining parameters and selecting guidance videos. The tool aims to help users make beautiful and unique video creations, providing control over the generation process. Setup instructions are available for Linux and Windows platforms, with detailed steps for installation and running the app.
For similar jobs

sweep
Sweep is an AI junior developer that turns bugs and feature requests into code changes. It automatically handles developer experience improvements like adding type hints and improving test coverage.

teams-ai
The Teams AI Library is a software development kit (SDK) that helps developers create bots that can interact with Teams and Microsoft 365 applications. It is built on top of the Bot Framework SDK and simplifies the process of developing bots that interact with Teams' artificial intelligence capabilities. The SDK is available for JavaScript/TypeScript, .NET, and Python.

ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.

classifai
Supercharge WordPress Content Workflows and Engagement with Artificial Intelligence. Tap into leading cloud-based services like OpenAI, Microsoft Azure AI, Google Gemini and IBM Watson to augment your WordPress-powered websites. Publish content faster while improving SEO performance and increasing audience engagement. ClassifAI integrates Artificial Intelligence and Machine Learning technologies to lighten your workload and eliminate tedious tasks, giving you more time to create original content that matters.

chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.

BricksLLM
BricksLLM is a cloud native AI gateway written in Go. Currently, it provides native support for OpenAI, Anthropic, Azure OpenAI and vLLM. BricksLLM aims to provide enterprise level infrastructure that can power any LLM production use cases. Here are some use cases for BricksLLM: * Set LLM usage limits for users on different pricing tiers * Track LLM usage on a per user and per organization basis * Block or redact requests containing PIIs * Improve LLM reliability with failovers, retries and caching * Distribute API keys with rate limits and cost limits for internal development/production use cases * Distribute API keys with rate limits and cost limits for students

uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.

griptape
Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. Griptape's core components include Structures (Agents, Pipelines, and Workflows), Tasks, Tools, Memory (Conversation Memory, Task Memory, and Meta Memory), Drivers (Prompt and Embedding Drivers, Vector Store Drivers, Image Generation Drivers, Image Query Drivers, SQL Drivers, Web Scraper Drivers, and Conversation Memory Drivers), Engines (Query Engines, Extraction Engines, Summary Engines, Image Generation Engines, and Image Query Engines), and additional components (Rulesets, Loaders, Artifacts, Chunkers, and Tokenizers). Griptape enables developers to create AI-powered applications with ease and efficiency.