WildBench
Benchmarking LLMs with Challenging Tasks from Real Users
Stars: 144
WildBench is a tool designed for benchmarking Large Language Models (LLMs) with challenging tasks sourced from real users in the wild. It provides a platform for evaluating the performance of various models on a range of tasks. Users can easily add new models to the benchmark by following the provided guidelines. The tool supports models from Hugging Face and other APIs, allowing for comprehensive evaluation and comparison. WildBench facilitates running inference and evaluation scripts, enabling users to contribute to the benchmark and collaborate on improving model performance.
README:
📑 Paper | 🤗 Leaderboard & 🤗 Dataset
HF_MODEL_ID="Magpie-Align/Llama-3-8B-Magpie-Align-v0.1" # example model id
MODEL_PRETTY_NAME="Llama-3-8B-Magpie-Align-v0.1" # example model name
NUM_GPUS=4 # depending on your hardwares;
# do inference on WildBench
bash scripts/_common_vllm.sh $HF_MODEL_ID $MODEL_PRETTY_NAME $NUM_GPUS
# submit to OpenAI for eval (WB-Score)
bash evaluation/run_score_eval_batch.sh ${MODEL_PRETTY_NAME}
# check the batch job status
python src/openai_batch_eval/check_batch_status_with_model_name.py ${MODEL_PRETTY_NAME}
# show the table
bash leaderboard/show_eval.sh score_only
[!NOTE] If your model is on HuggingFace and/or it is supported by vLLM, please add the chat template to the tokenizer config and follow the Shortcut below. If your model is not supported by vLLM, you can still create an Issue and let us know how to run your model.
Click to expand
conda create -n zeroeval python=3.10
conda activate zeroeval
# pip install vllm -U # pip install -e vllm
pip install vllm==0.5.1
pip install -r requirements.txt
bash scripts/_common_vllm.sh [hf_model_id] [model_pretty_name] [num_gpus]
# bash scripts/_common_vllm.sh m-a-p/neo_7b_instruct_v0.1 neo_7b_instruct_v0.1 4 # example
# 1st arg is hf_name; 2nd is the pretty name; 3rd is the number of shards (gpus)
Case 1: Models supported by vLLM
You can take the files under scripts
as a reference to add a new model to the benchmark, for example, to add Yi-1.5-9B-Chat.sh
to the benchmark, you can follow the following steps:
- Create a script named "Yi-1.5-9B-Chat.sh.py" under
scripts
folder. - Copy and paste the most similar existing script file to it, rename the file to the
[model_pretty_name].sh
. - Change the
model_name
andmodel_pretty_name
to01-ai/Yi-1.5-9B-Chat
andYi-1.5-9B-Chat.sh
respectively. Make sure thatmodel_name
is the same as the model name in the Hugging Face model hub, and themodel_pretty_name
is the same as the script name without the.py
extension. - Specify the conversation template for this model by modifying the code in
src/fastchat_conversation.py
or setting the--use_hf_conv_template
argument if your hugingface model contains a conversation template in tokenizer config. - Run your script to make sure it works. You can run the script by running
bash scripts/Yi-1.5-9B-Chat.sh
in the root folder. - Create a PR to add your script to the benchmark.
For Step 3-5, you can also use the above shortcut common command to run the model if your model is supported by vLLM and has a conversation template on hf's tokenizer config.
Case 2: Models that are only supported by native HuggingFace API
Some new models may not be supported by vLLM for now. You can do the same thing as above but use --engine hf
in the script instead, and test your script. Note that some models may need more specific configurations, and you will need to read the code and modify them accordingly. In these cases, you should add name-checking conditions to ensure that the model-specific changes are only applied to the specific model.
Case 3: Private API-based Models
You should change the code to add these APIs, for example, gemini, cohere, claude, and reka. You can refer to the --engine openai
logic in the existing scripts to add your own API-based models. Please make sure that you do not expose your API keys in the code. If your model is on Together.AI platform, you can use the --engine together
option to run your model, see scripts/[email protected]
for an example.
[!NOTE] If you'd like to have your model results verified and published on our leaderboard, please create an issue telling us and we'll do the inference and evaluation for you.
bash evaluation/run_score_eval_batch.sh ${MODEL_PRETTY_NAME}
bash leaderboard/show_eval.sh score_only
How do you evaluate the performance of LLMs on WildBench? (V2 Updates)
- Reward=100 if the A is much better than B.
- Reward=50 if the A is slightly better than B.
- Reward=0 if there is a Tie.
- Reward=-50 if the A is slightly worse than B.
- Reward=-100 if the A is much worse than B.
We suggest to use OpenAI's Batch Mode for evaluation, which is faster, cheaper and more reliable.
You can:
-
- Run
bash evaluation/run_all_eval_batch.sh ${MODEL_PRETTY_NAME}
to submit the eval jobs.; Or if you only want to do scoring, runningbash evaluation/run_score_eval_batch.sh
to submit the eval jobs for only doing the WB Score. (about $5 per model)
- Run
-
- Run
python src/openai_batch_eval/check_batch_status_with_model_name.py ${MODEL_PRETTY_NAME}
to track the status of the batch jobs.
- Run
-
- Step 2 will download the results when batch jobs are finished, and then you can view the results (see next section).
Remarks
-
${MODEL_PRETTY_NAME}
should be the same as the script name without the.sh
extension. - You can also track the progress of your batch jobs here: https://platform.openai.com/batches. The maximum turnaround time is 24 hours, but it is usually much faster depending on the queue and rate limits.
- If you'd like to have more control on the evaluation methods, the detail steps are illustrated in EVAL.md.
When Step 3 in the above section is finished, you can view the results by running the following commands:
bash leaderboard/show_eval.sh # run all and show the main leaderboard
python leaderboard/show_table.py --mode main # (optional) to show the main leaderboard w/o recomputing
python leaderboard/show_table.py --mode taskwise_score # (optional) to show the taskwise score
To analyze the correlation between WildBench (v2) and human evaluation, we consider the correlation between different metrics and human-based Chatbot Arena Elo scores (until 2024-05-20 on Hard-English split). We find that the WB Reward-Mix has the highest correlation. Please find the pearson correlation coefficients below:
- Top Models:
['gpt-4-turbo-2024-04-09', 'claude-3-opus-20240229', 'Meta-Llama-3-70B-Instruct', 'claude-3-sonnet-20240229', 'mistral-large-2402', 'Meta-Llama-3-8B-Instruct']
- All Models:
['gpt-4-turbo-2024-04-09', 'claude-3-opus-20240229', 'Meta-Llama-3-70B-Instruct', 'Qwen1.5-72B-Chat', 'claude-3-sonnet-20240229', 'mistral-large-2402', 'dbrx-instruct@together', 'Mixtral-8x7B-Instruct-v0.1', 'Meta-Llama-3-8B-Instruct', 'tulu-2-dpo-70b', 'Llama-2-70b-chat-hf', 'Llama-2-7b-chat-hf', 'gemma-7b-it', 'gemma-2b-it']
- [ ] openchat/openchat-3.6-8b-20240522
- [ ] gemma-2
- [ ] SimPO-v0.2
- [ ] Qwen2-7B-Chat
- [x] LLM360/K2-Chat
- [x] DeepSeek-V2-Code
- [x] Yi-large-preview
- [x] THUDM/glm-4-9b-chat
- [x] chujiezheng/neo_7b_instruct_v0.1-ExPO
- [x] ZhangShenao/SELM-Llama-3-8B-Instruct-iter-3
- [x] m-a-p/neo_7b_instruct_v0.1
- [x] Reka Flash
- [x] DeepSeekV2-Chat
- [x] Reka Core
- [x] Yi-Large (via OpenAI-like APIs)
- [x] chujiezheng/Llama-3-Instruct-8B-SimPO-ExPO
- [x] chujiezheng/Starling-LM-7B-beta-ExPO
- [x] Gemini 1.5 series
- [x] Qwen2-72B-Instruct
- [x] ZhangShenao/SELM-Zephyr-7B-iter-3
- [x] NousResearch/Hermes-2-Theta-Llama-3-8B
- [x] princeton-nlp/Llama-3-Instruct-8B-SimPO
- [x] Command-R-plus
- [x] Phi-3 series
Create an Issue if you'd like to add a model that you wanna see on our leaderboard!
- [ ] support models via openai-style apis
- [ ] Show task categorized results
@misc{lin2024wildbench,
title={WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild},
author={Bill Yuchen Lin and Yuntian Deng and Khyathi Chandu and Faeze Brahman and Abhilasha Ravichander and Valentina Pyatkin and Nouha Dziri and Ronan Le Bras and Yejin Choi},
year={2024},
eprint={2406.04770},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2406.04770}
}
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for WildBench
Similar Open Source Tools
WildBench
WildBench is a tool designed for benchmarking Large Language Models (LLMs) with challenging tasks sourced from real users in the wild. It provides a platform for evaluating the performance of various models on a range of tasks. Users can easily add new models to the benchmark by following the provided guidelines. The tool supports models from Hugging Face and other APIs, allowing for comprehensive evaluation and comparison. WildBench facilitates running inference and evaluation scripts, enabling users to contribute to the benchmark and collaborate on improving model performance.
skyrim
Skyrim is a weather forecasting tool that enables users to run large weather models using consumer-grade GPUs. It provides access to state-of-the-art foundational weather models through a well-maintained infrastructure. Users can forecast weather conditions, such as wind speed and direction, by running simulations on their own GPUs or using modal volume or cloud services like s3 buckets. Skyrim supports various large weather models like Graphcast, Pangu, Fourcastnet, and DLWP, with plans for future enhancements like ensemble prediction and model quantization.
AIOS
AIOS, a Large Language Model (LLM) Agent operating system, embeds large language model into Operating Systems (OS) as the brain of the OS, enabling an operating system "with soul" -- an important step towards AGI. AIOS is designed to optimize resource allocation, facilitate context switch across agents, enable concurrent execution of agents, provide tool service for agents, maintain access control for agents, and provide a rich set of toolkits for LLM Agent developers.
ReST-MCTS
ReST-MCTS is a reinforced self-training approach that integrates process reward guidance with tree search MCTS to collect higher-quality reasoning traces and per-step value for training policy and reward models. It eliminates the need for manual per-step annotation by estimating the probability of steps leading to correct answers. The inferred rewards refine the process reward model and aid in selecting high-quality traces for policy model self-training.
open-parse
Open Parse is a Python library for visually discerning document layouts and chunking them effectively. It is designed to fill the gap in open-source libraries for handling complex documents. Unlike text splitting, which converts a file to raw text and slices it up, Open Parse visually analyzes documents for superior LLM input. It also supports basic markdown for parsing headings, bold, and italics, and has high-precision table support, extracting tables into clean Markdown formats with accuracy that surpasses traditional tools. Open Parse is extensible, allowing users to easily implement their own post-processing steps. It is also intuitive, with great editor support and completion everywhere, making it easy to use and learn.
premsql
PremSQL is an open-source library designed to help developers create secure, fully local Text-to-SQL solutions using small language models. It provides essential tools for building and deploying end-to-end Text-to-SQL pipelines with customizable components, ideal for secure, autonomous AI-powered data analysis. The library offers features like Local-First approach, Customizable Datasets, Robust Executors and Evaluators, Advanced Generators, Error Handling and Self-Correction, Fine-Tuning Support, and End-to-End Pipelines. Users can fine-tune models, generate SQL queries from natural language inputs, handle errors, and evaluate model performance against predefined metrics. PremSQL is extendible for customization and private data usage.
RLAIF-V
RLAIF-V is a novel framework that aligns MLLMs in a fully open-source paradigm for super GPT-4V trustworthiness. It maximally exploits open-source feedback from high-quality feedback data and online feedback learning algorithm. Notable features include achieving super GPT-4V trustworthiness in both generative and discriminative tasks, using high-quality generalizable feedback data to reduce hallucination of different MLLMs, and exhibiting better learning efficiency and higher performance through iterative alignment.
humanoid-gym
Humanoid-Gym is a reinforcement learning framework designed for training locomotion skills for humanoid robots, focusing on zero-shot transfer from simulation to real-world environments. It integrates a sim-to-sim framework from Isaac Gym to Mujoco for verifying trained policies in different physical simulations. The codebase is verified with RobotEra's XBot-S and XBot-L humanoid robots. It offers comprehensive training guidelines, step-by-step configuration instructions, and execution scripts for easy deployment. The sim2sim support allows transferring trained policies to accurate simulated environments. The upcoming features include Denoising World Model Learning and Dexterous Hand Manipulation. Installation and usage guides are provided along with examples for training PPO policies and sim-to-sim transformations. The code structure includes environment and configuration files, with instructions on adding new environments. Troubleshooting tips are provided for common issues, along with a citation and acknowledgment section.
qa-mdt
This repository provides an implementation of QA-MDT, integrating state-of-the-art models for music generation. It offers a Quality-Aware Masked Diffusion Transformer for enhanced music generation. The code is based on various repositories like AudioLDM, PixArt-alpha, MDT, AudioMAE, and Open-Sora. The implementation allows for training and fine-tuning the model with different strategies and datasets. The repository also includes instructions for preparing datasets in LMDB format and provides a script for creating a toy LMDB dataset. The model can be used for music generation tasks, with a focus on quality injection to enhance the musicality of generated music.
rosa
ROSA is an AI Agent designed to interact with ROS-based robotics systems using natural language queries. It can generate system reports, read and parse ROS log files, adapt to new robots, and run various ROS commands using natural language. The tool is versatile for robotics research and development, providing an easy way to interact with robots and the ROS environment.
OpenAdapt
OpenAdapt is an open-source software adapter between Large Multimodal Models (LMMs) and traditional desktop and web Graphical User Interfaces (GUIs). It aims to automate repetitive GUI workflows by leveraging the power of LMMs. OpenAdapt records user input and screenshots, converts them into tokenized format, and generates synthetic input via transformer model completions. It also analyzes recordings to generate task trees and replay synthetic input to complete tasks. OpenAdapt is model agnostic and generates prompts automatically by learning from human demonstration, ensuring that agents are grounded in existing processes and mitigating hallucinations. It works with all types of desktop GUIs, including virtualized and web, and is open source under the MIT license.
Easy-Translate
Easy-Translate is a script designed for translating large text files with a single command. It supports various models like M2M100, NLLB200, SeamlessM4T, LLaMA, and Bloom. The tool is beginner-friendly and offers seamless and customizable features for advanced users. It allows acceleration on CPU, multi-CPU, GPU, multi-GPU, and TPU, with support for different precisions and decoding strategies. Easy-Translate also provides an evaluation script for translations. Built on HuggingFace's Transformers and Accelerate library, it supports prompt usage and loading huge models efficiently.
gpt-engineer
GPT-Engineer is a tool that allows you to specify a software in natural language, sit back and watch as an AI writes and executes the code, and ask the AI to implement improvements.
expo-stable-diffusion
The `expo-stable-diffusion` repository provides a tool for generating images using Stable Diffusion natively on iOS devices within Expo and React Native apps. Users can install and configure the module to create images based on prompts. The repository includes information on updating iOS deployment targets, enabling increased memory limits, and building iOS apps. Additionally, users can obtain Stable Diffusion models from various sources. The repository also addresses troubleshooting tips related to model load times and image generation durations. The developer seeks sponsorship to further enhance the project, including adding Android support.
llama-cpp-agent
The llama-cpp-agent framework is a tool designed for easy interaction with Large Language Models (LLMs). Allowing users to chat with LLM models, execute structured function calls and get structured output (objects). It provides a simple yet robust interface and supports llama-cpp-python and OpenAI endpoints with GBNF grammar support (like the llama-cpp-python server) and the llama.cpp backend server. It works by generating a formal GGML-BNF grammar of the user defined structures and functions, which is then used by llama.cpp to generate text valid to that grammar. In contrast to most GBNF grammar generators it also supports nested objects, dictionaries, enums and lists of them.
LLM-Finetuning-Toolkit
LLM Finetuning toolkit is a config-based CLI tool for launching a series of LLM fine-tuning experiments on your data and gathering their results. It allows users to control all elements of a typical experimentation pipeline - prompts, open-source LLMs, optimization strategy, and LLM testing - through a single YAML configuration file. The toolkit supports basic, intermediate, and advanced usage scenarios, enabling users to run custom experiments, conduct ablation studies, and automate fine-tuning workflows. It provides features for data ingestion, model definition, training, inference, quality assurance, and artifact outputs, making it a comprehensive tool for fine-tuning large language models.
For similar tasks
WildBench
WildBench is a tool designed for benchmarking Large Language Models (LLMs) with challenging tasks sourced from real users in the wild. It provides a platform for evaluating the performance of various models on a range of tasks. Users can easily add new models to the benchmark by following the provided guidelines. The tool supports models from Hugging Face and other APIs, allowing for comprehensive evaluation and comparison. WildBench facilitates running inference and evaluation scripts, enabling users to contribute to the benchmark and collaborate on improving model performance.
anythingllm-docs
anythingllm-docs is a documentation repository for the AnythingLLM project. It contains detailed guides, setup instructions, and information on features and legal aspects of the project. The repository structure is organized into public, pages, components, and configuration files. Users can contribute by creating issues and pull requests following specific guidelines. The project is licensed under the MIT License and has been migrated to NextJS with the help of @ShadowArcanist.
labelbox-python
Labelbox is a data-centric AI platform for enterprises to develop, optimize, and use AI to solve problems and power new products and services. Enterprises use Labelbox to curate data, generate high-quality human feedback data for computer vision and LLMs, evaluate model performance, and automate tasks by combining AI and human-centric workflows. The academic & research community uses Labelbox for cutting-edge AI research.
promptfoo
Promptfoo is a tool for testing and evaluating LLM output quality. With promptfoo, you can build reliable prompts, models, and RAGs with benchmarks specific to your use-case, speed up evaluations with caching, concurrency, and live reloading, score outputs automatically by defining metrics, use as a CLI, library, or in CI/CD, and use OpenAI, Anthropic, Azure, Google, HuggingFace, open-source models like Llama, or integrate custom API providers for any LLM API.
vespa
Vespa is a platform that performs operations such as selecting a subset of data in a large corpus, evaluating machine-learned models over the selected data, organizing and aggregating it, and returning it, typically in less than 100 milliseconds, all while the data corpus is continuously changing. It has been in development for many years and is used on a number of large internet services and apps which serve hundreds of thousands of queries from Vespa per second.
python-aiplatform
The Vertex AI SDK for Python is a library that provides a convenient way to use the Vertex AI API. It offers a high-level interface for creating and managing Vertex AI resources, such as datasets, models, and endpoints. The SDK also provides support for training and deploying custom models, as well as using AutoML models. With the Vertex AI SDK for Python, you can quickly and easily build and deploy machine learning models on Vertex AI.
ScandEval
ScandEval is a framework for evaluating pretrained language models on mono- or multilingual language tasks. It provides a unified interface for benchmarking models on a variety of tasks, including sentiment analysis, question answering, and machine translation. ScandEval is designed to be easy to use and extensible, making it a valuable tool for researchers and practitioners alike.
opencompass
OpenCompass is a one-stop platform for large model evaluation, aiming to provide a fair, open, and reproducible benchmark for large model evaluation. Its main features include: * Comprehensive support for models and datasets: Pre-support for 20+ HuggingFace and API models, a model evaluation scheme of 70+ datasets with about 400,000 questions, comprehensively evaluating the capabilities of the models in five dimensions. * Efficient distributed evaluation: One line command to implement task division and distributed evaluation, completing the full evaluation of billion-scale models in just a few hours. * Diversified evaluation paradigms: Support for zero-shot, few-shot, and chain-of-thought evaluations, combined with standard or dialogue-type prompt templates, to easily stimulate the maximum performance of various models. * Modular design with high extensibility: Want to add new models or datasets, customize an advanced task division strategy, or even support a new cluster management system? Everything about OpenCompass can be easily expanded! * Experiment management and reporting mechanism: Use config files to fully record each experiment, and support real-time reporting of results.
For similar jobs
weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.
LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.
VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.
kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.
PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.
tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.
spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.
Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.