albumentations
Fast image augmentation library and an easy-to-use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about the library: https://www.mdpi.com/2078-2489/11/2/125
Stars: 13557
Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to increase the quality of trained models. The purpose of image augmentation is to create new training samples from the existing data.
README:
Docs | Discord | Twitter | LinkedIn
Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to increase the quality of trained models. The purpose of image augmentation is to create new training samples from the existing data.
Here is an example of how you can apply some pixel-level augmentations from Albumentations to create new images from the original one:
- Albumentations supports all common computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation.
- The library provides a simple unified API to work with all data types: images (RBG-images, grayscale images, multispectral images), segmentation masks, bounding boxes, and keypoints.
- The library contains more than 70 different augmentations to generate new training samples from the existing data.
- Albumentations is fast. We benchmark each new release to ensure that augmentations provide maximum speed.
- It works with popular deep learning frameworks such as PyTorch and TensorFlow. By the way, Albumentations is a part of the PyTorch ecosystem.
- Written by experts. The authors have experience both working on production computer vision systems and participating in competitive machine learning. Many core team members are Kaggle Masters and Grandmasters.
- The library is widely used in industry, deep learning research, machine learning competitions, and open source projects.
- Albumentations
Vladimir I. Iglovikov | Kaggle Grandmaster
Mikhail Druzhinin | Kaggle Expert
Alexander Buslaev — Computer Vision Engineer at Mapbox | Kaggle Master
Evegene Khvedchenya — Computer Vision Research Engineer at Piñata Farms | Kaggle Grandmaster
Albumentations requires Python 3.8 or higher. To install the latest version from PyPI:
pip install -U albumentations
Other installation options are described in the documentation.
The full documentation is available at https://albumentations.ai/docs/.
import albumentations as A
import cv2
# Declare an augmentation pipeline
transform = A.Compose([
A.RandomCrop(width=256, height=256),
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.2),
])
# Read an image with OpenCV and convert it to the RGB colorspace
image = cv2.imread("image.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Augment an image
transformed = transform(image=image)
transformed_image = transformed["image"]
Please start with the introduction articles about why image augmentation is important and how it helps to build better models.
If you want to use Albumentations for a specific task such as classification, segmentation, or object detection, refer to the set of articles that has an in-depth description of this task. We also have a list of examples on applying Albumentations for different use cases.
We have examples of using Albumentations along with PyTorch and TensorFlow.
Check the online demo of the library. With it, you can apply augmentations to different images and see the result. Also, we have a list of all available augmentations and their targets.
- A list of papers that cite Albumentations.
- A list of teams that were using Albumentations and took high places in machine learning competitions.
- Open source projects that use Albumentations.
Pixel-level transforms will change just an input image and will leave any additional targets such as masks, bounding boxes, and keypoints unchanged. The list of pixel-level transforms:
- AdvancedBlur
- Blur
- CLAHE
- ChannelDropout
- ChannelShuffle
- ChromaticAberration
- ColorJitter
- Defocus
- Downscale
- Emboss
- Equalize
- FDA
- FancyPCA
- FromFloat
- GaussNoise
- GaussianBlur
- GlassBlur
- HistogramMatching
- HueSaturationValue
- ISONoise
- ImageCompression
- InvertImg
- MedianBlur
- MotionBlur
- MultiplicativeNoise
- Normalize
- PixelDistributionAdaptation
- Posterize
- RGBShift
- RandomBrightnessContrast
- RandomFog
- RandomGamma
- RandomGravel
- RandomRain
- RandomShadow
- RandomSnow
- RandomSunFlare
- RandomToneCurve
- RingingOvershoot
- Sharpen
- Solarize
- Spatter
- Superpixels
- TemplateTransform
- ToFloat
- ToGray
- ToRGB
- ToSepia
- UnsharpMask
- ZoomBlur
Spatial-level transforms will simultaneously change both an input image as well as additional targets such as masks, bounding boxes, and keypoints. The following table shows which additional targets are supported by each transform.
Transform | Image | Mask | BBoxes | Keypoints |
---|---|---|---|---|
Affine | ✓ | ✓ | ✓ | ✓ |
BBoxSafeRandomCrop | ✓ | ✓ | ✓ | |
CenterCrop | ✓ | ✓ | ✓ | ✓ |
CoarseDropout | ✓ | ✓ | ✓ | |
Crop | ✓ | ✓ | ✓ | ✓ |
CropAndPad | ✓ | ✓ | ✓ | ✓ |
CropNonEmptyMaskIfExists | ✓ | ✓ | ✓ | ✓ |
D4 | ✓ | ✓ | ✓ | ✓ |
ElasticTransform | ✓ | ✓ | ✓ | |
Flip | ✓ | ✓ | ✓ | ✓ |
GridDistortion | ✓ | ✓ | ✓ | |
GridDropout | ✓ | ✓ | ||
HorizontalFlip | ✓ | ✓ | ✓ | ✓ |
Lambda | ✓ | ✓ | ✓ | ✓ |
LongestMaxSize | ✓ | ✓ | ✓ | ✓ |
MaskDropout | ✓ | ✓ | ||
Morphological | ✓ | ✓ | ||
NoOp | ✓ | ✓ | ✓ | ✓ |
OpticalDistortion | ✓ | ✓ | ✓ | |
PadIfNeeded | ✓ | ✓ | ✓ | ✓ |
Perspective | ✓ | ✓ | ✓ | ✓ |
PiecewiseAffine | ✓ | ✓ | ✓ | ✓ |
PixelDropout | ✓ | ✓ | ||
RandomCrop | ✓ | ✓ | ✓ | ✓ |
RandomCropFromBorders | ✓ | ✓ | ✓ | ✓ |
RandomGridShuffle | ✓ | ✓ | ✓ | |
RandomResizedCrop | ✓ | ✓ | ✓ | ✓ |
RandomRotate90 | ✓ | ✓ | ✓ | ✓ |
RandomScale | ✓ | ✓ | ✓ | ✓ |
RandomSizedBBoxSafeCrop | ✓ | ✓ | ✓ | |
RandomSizedCrop | ✓ | ✓ | ✓ | ✓ |
Resize | ✓ | ✓ | ✓ | ✓ |
Rotate | ✓ | ✓ | ✓ | ✓ |
SafeRotate | ✓ | ✓ | ✓ | ✓ |
ShiftScaleRotate | ✓ | ✓ | ✓ | ✓ |
SmallestMaxSize | ✓ | ✓ | ✓ | ✓ |
Transpose | ✓ | ✓ | ✓ | ✓ |
VerticalFlip | ✓ | ✓ | ✓ | ✓ |
XYMasking | ✓ | ✓ | ✓ |
Transforms that mix several images into one
Transform | Image | Mask | BBoxes | Keypoints | Global Label |
---|---|---|---|---|---|
MixUp | ✓ | ✓ | ✓ |
To run the benchmark yourself, follow the instructions in benchmark/README.md
Results for running the benchmark on the first 2000 images from the ImageNet validation set using an AMD Ryzen Threadripper 3970X CPU. The table shows how many images per second can be processed on a single core; higher is better.
Library | Version |
---|---|
Python | 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] |
albumentations | 1.4.1 |
imgaug | 0.4.0 |
torchvision | 0.17.1+rocm5.7 |
numpy | 1.26.4 |
opencv-python-headless | 4.9.0.80 |
scikit-image | 0.22.0 |
scipy | 1.12.0 |
pillow | 10.2.0 |
kornia | 0.7.2 |
augly | 1.0.0 |
albumentations 1.4.0 |
torchvision 0.17.1+rocm5.7 |
kornia 0.7.2 |
augly 1.0.0 |
imgaug 0.4.0 |
|
---|---|---|---|---|---|
HorizontalFlip | 9843 ± 2135 | 2436 ± 29 | 1014 ± 3 | 3663 ± 18 | 4884 ± 51 |
VerticalFlip | 9898 ± 18 | 2570 ± 37 | 1024 ± 4 | 5325 ± 13 | 8683 ± 5 |
Rotate | 610 ± 4 | 153 ± 2 | 204 ± 1 | 626 ± 3 | 499 ± 5 |
Affine | 1705 ± 67 | 159 ± 1 | 200 ± 1 | - | 663 ± 24 |
Equalize | 1061 ± 14 | 337 ± 1 | 77 ± 1 | - | 845 ± 33 |
RandomCrop64 | 203197 ± 2105 | 15931 ± 27 | 837 ± 2 | 21858 ± 362 | 5681 ± 96 |
RandomResizedCrop | 2998 ± 30 | 1160 ± 4 | 190 ± 1 | - | - |
ShiftRGB | 1400 ± 3 | - | 435 ± 1 | - | 1528 ± 6 |
Resize | 2581 ± 3 | 1239 ± 1 | 197 ± 1 | 431 ± 1 | 1728 ± 1 |
RandomGamma | 4556 ± 3 | 230 ± 1 | 205 ± 1 | - | 2282 ± 110 |
Grayscale | 7234 ± 4 | 1539 ± 7 | 444 ± 3 | 2606 ± 2 | 918 ± 42 |
ColorJitter | 452 ± 43 | 51 ± 1 | 50 ± 1 | 221 ± 1 | - |
RandomPerspective | 465 ± 1 | 121 ± 1 | 115 ± 1 | - | 433 ± 16 |
GaussianBlur | 2315 ± 9 | 106 ± 2 | 72 ± 1 | 161 ± 1 | 1213 ± 3 |
MedianBlur | 3711 ± 2 | - | 2 ± 1 | - | 566 ± 3 |
MotionBlur | 2763 ± 25 | - | 101 ± 4 | - | 508 ± 2 |
Posterize | 4238 ± 51 | 2581 ± 20 | 284 ± 4 | - | 1893 ± 9 |
JpegCompression | 208 ± 1 | - | - | 692 ± 4 | 435 ± 1 |
GaussianNoise | 64 ± 9 | - | - | 67 ± 1 | 212 ± 16 |
Elastic | 129 ± 1 | 3 ± 1 | 1 ± 1 | - | 128 ± 1 |
To create a pull request to the repository, follow the documentation at CONTRIBUTING.md
In some systems, in the multiple GPU regime, PyTorch may deadlock the DataLoader if OpenCV was compiled with OpenCL optimizations. Adding the following two lines before the library import may help. For more details https://github.com/pytorch/pytorch/issues/1355
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
If you find this library useful for your research, please consider citing Albumentations: Fast and Flexible Image Augmentations:
@Article{info11020125,
AUTHOR = {Buslaev, Alexander and Iglovikov, Vladimir I. and Khvedchenya, Eugene and Parinov, Alex and Druzhinin, Mikhail and Kalinin, Alexandr A.},
TITLE = {Albumentations: Fast and Flexible Image Augmentations},
JOURNAL = {Information},
VOLUME = {11},
YEAR = {2020},
NUMBER = {2},
ARTICLE-NUMBER = {125},
URL = {https://www.mdpi.com/2078-2489/11/2/125},
ISSN = {2078-2489},
DOI = {10.3390/info11020125}
}
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for albumentations
Similar Open Source Tools
albumentations
Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to increase the quality of trained models. The purpose of image augmentation is to create new training samples from the existing data.
Botright
Botright is a tool designed for browser automation that focuses on stealth and captcha solving. It uses a real Chromium-based browser for enhanced stealth and offers features like browser fingerprinting and AI-powered captcha solving. The tool is suitable for developers looking to automate browser tasks while maintaining anonymity and bypassing captchas. Botright is available in async mode and can be easily integrated with existing Playwright code. It provides solutions for various captchas such as hCaptcha, reCaptcha, and GeeTest, with high success rates. Additionally, Botright offers browser stealth techniques and supports different browser functionalities for seamless automation.
unsloth
Unsloth is a tool that allows users to fine-tune large language models (LLMs) 2-5x faster with 80% less memory. It is a free and open-source tool that can be used to fine-tune LLMs such as Gemma, Mistral, Llama 2-5, TinyLlama, and CodeLlama 34b. Unsloth supports 4-bit and 16-bit QLoRA / LoRA fine-tuning via bitsandbytes. It also supports DPO (Direct Preference Optimization), PPO, and Reward Modelling. Unsloth is compatible with Hugging Face's TRL, Trainer, Seq2SeqTrainer, and Pytorch code. It is also compatible with NVIDIA GPUs since 2018+ (minimum CUDA Capability 7.0).
LLamaTuner
LLamaTuner is a repository for the Efficient Finetuning of Quantized LLMs project, focusing on building and sharing instruction-following Chinese baichuan-7b/LLaMA/Pythia/GLM model tuning methods. The project enables training on a single Nvidia RTX-2080TI and RTX-3090 for multi-round chatbot training. It utilizes bitsandbytes for quantization and is integrated with Huggingface's PEFT and transformers libraries. The repository supports various models, training approaches, and datasets for supervised fine-tuning, LoRA, QLoRA, and more. It also provides tools for data preprocessing and offers models in the Hugging Face model hub for inference and finetuning. The project is licensed under Apache 2.0 and acknowledges contributions from various open-source contributors.
nntrainer
NNtrainer is a software framework for training neural network models on devices with limited resources. It enables on-device fine-tuning of neural networks using user data for personalization. NNtrainer supports various machine learning algorithms and provides examples for tasks such as few-shot learning, ResNet, VGG, and product rating. It is optimized for embedded devices and utilizes CBLAS and CUBLAS for accelerated calculations. NNtrainer is open source and released under the Apache License version 2.0.
gpupixel
GPUPixel is a real-time, high-performance image and video filter library written in C++11 and based on OpenGL/ES. It incorporates a built-in beauty face filter that achieves commercial-grade beauty effects. The library is extremely easy to compile and integrate with a small size, supporting platforms including iOS, Android, Mac, Windows, and Linux. GPUPixel provides various filters like skin smoothing, whitening, face slimming, big eyes, lipstick, and blush. It supports input formats like YUV420P, RGBA, JPEG, PNG, and output formats like RGBA and YUV420P. The library's performance on devices like iPhone and Android is optimized, with low CPU usage and fast processing times. GPUPixel's lib size is compact, making it suitable for mobile and desktop applications.
SpinQuant
SpinQuant is a tool designed for LLM quantization with learned rotations. It focuses on optimizing rotation matrices to enhance the performance of quantized models, narrowing the accuracy gap to full precision models. The tool implements rotation optimization and PTQ evaluation with optimized rotation, providing arguments for model name, batch sizes, quantization bits, and rotation options. SpinQuant is based on the findings that rotation helps in removing outliers and improving quantization, with specific enhancements achieved through learning rotation with Cayley optimization.
kangaroo
Kangaroo is an AI-powered SQL client and admin tool for popular databases like SQLite, MySQL, PostgreSQL, etc. It supports various functionalities such as table design, query, model, sync, export/import, and more. The tool is designed to be comfortable, fun, and developer-friendly, with features like code intellisense and autocomplete. Kangaroo aims to provide a seamless experience for database management across different operating systems.
llm-awq
AWQ (Activation-aware Weight Quantization) is a tool designed for efficient and accurate low-bit weight quantization (INT3/4) for Large Language Models (LLMs). It supports instruction-tuned models and multi-modal LMs, providing features such as AWQ search for accurate quantization, pre-computed AWQ model zoo for various LLMs, memory-efficient 4-bit linear in PyTorch, and efficient CUDA kernel implementation for fast inference. The tool enables users to run large models on resource-constrained edge platforms, delivering more efficient responses with LLM/VLM chatbots through 4-bit inference.
go-cyber
Cyber is a superintelligence protocol that aims to create a decentralized and censorship-resistant internet. It uses a novel consensus mechanism called CometBFT and a knowledge graph to store and process information. Cyber is designed to be scalable, secure, and efficient, and it has the potential to revolutionize the way we interact with the internet.
MindChat
MindChat is a psychological large language model designed to help individuals relieve psychological stress and solve mental confusion, ultimately improving mental health. It aims to provide a relaxed and open conversation environment for users to build trust and understanding. MindChat offers privacy, warmth, safety, timely, and convenient conversation settings to help users overcome difficulties and challenges, achieve self-growth, and development. The tool is suitable for both work and personal life scenarios, providing comprehensive psychological support and therapeutic assistance to users while strictly protecting user privacy. It combines psychological knowledge with artificial intelligence technology to contribute to a healthier, more inclusive, and equal society.
Awesome-LLMs-for-Video-Understanding
Awesome-LLMs-for-Video-Understanding is a repository dedicated to exploring Video Understanding with Large Language Models. It provides a comprehensive survey of the field, covering models, pretraining, instruction tuning, and hybrid methods. The repository also includes information on tasks, datasets, and benchmarks related to video understanding. Contributors are encouraged to add new papers, projects, and materials to enhance the repository.
AI0x0.com
AI 0x0 is a versatile AI query generation desktop floating assistant application that supports MacOS and Windows. It allows users to utilize AI capabilities in any desktop software to query and generate text, images, audio, and video data, helping them work more efficiently. The application features a dynamic desktop floating ball, floating dialogue bubbles, customizable presets, conversation bookmarking, preset packages, network acceleration, query mode, input mode, mouse navigation, deep customization of ChatGPT Next Web, support for full-format libraries, online search, voice broadcasting, voice recognition, voice assistant, application plugins, multi-model support, online text and image generation, image recognition, frosted glass interface, light and dark theme adaptation for each language model, and free access to all language models except Chat0x0 with a key.
TrustLLM
TrustLLM is a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. The document explains how to use the trustllm python package to help you assess the performance of your LLM in trustworthiness more quickly. For more details about TrustLLM, please refer to project website.
Awesome-LLM-Tabular
This repository is a curated list of research papers that explore the integration of Large Language Model (LLM) technology with tabular data. It aims to provide a comprehensive resource for researchers and practitioners interested in this emerging field. The repository includes papers on a wide range of topics, including table-to-text generation, table question answering, and tabular data classification. It also includes a section on related datasets and resources.
For similar tasks
albumentations
Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to increase the quality of trained models. The purpose of image augmentation is to create new training samples from the existing data.
For similar jobs
albumentations
Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to increase the quality of trained models. The purpose of image augmentation is to create new training samples from the existing data.
clarifai-python
The Clarifai Python SDK offers a comprehensive set of tools to integrate Clarifai's AI platform to leverage computer vision capabilities like classification , detection ,segementation and natural language capabilities like classification , summarisation , generation , Q&A ,etc into your applications. With just a few lines of code, you can leverage cutting-edge artificial intelligence to unlock valuable insights from visual and textual content.
ailia-models
The collection of pre-trained, state-of-the-art AI models. ailia SDK is a self-contained, cross-platform, high-speed inference SDK for AI. The ailia SDK provides a consistent C++ API across Windows, Mac, Linux, iOS, Android, Jetson, and Raspberry Pi platforms. It also supports Unity (C#), Python, Rust, Flutter(Dart) and JNI for efficient AI implementation. The ailia SDK makes extensive use of the GPU through Vulkan and Metal to enable accelerated computing. # Supported models 323 models as of April 8th, 2024
edenai-apis
Eden AI aims to simplify the use and deployment of AI technologies by providing a unique API that connects to all the best AI engines. With the rise of **AI as a Service** , a lot of companies provide off-the-shelf trained models that you can access directly through an API. These companies are either the tech giants (Google, Microsoft , Amazon) or other smaller, more specialized companies, and there are hundreds of them. Some of the most known are : DeepL (translation), OpenAI (text and image analysis), AssemblyAI (speech analysis). There are **hundreds of companies** doing that. We're regrouping the best ones **in one place** !
Awesome-Segment-Anything
The Segment Anything Model (SAM) is a powerful tool that allows users to segment any object in an image with just a few clicks. This makes it a great tool for a variety of tasks, such as object detection, tracking, and editing. SAM is also very easy to use, making it a great option for both beginners and experienced users.