VinAI_Translate

VinAI_Translate

A Vietnamese-English Neural Machine Translation System (INTERSPEECH 2022)

Stars: 117

Visit
 screenshot

VinAI_Translate is a Vietnamese-English Neural Machine Translation System offering state-of-the-art text-to-text translation models for Vietnamese-to-English and English-to-Vietnamese. The system includes pre-trained models with different configurations and parameters, allowing for further fine-tuning. Users can interact with the models through the VinAI Translate system website or the HuggingFace space 'VinAI Translate'. Evaluation scripts are available for assessing the translation quality. The tool can be used in the 'transformers' library for Vietnamese-to-English and English-to-Vietnamese translations, supporting both GPU-based batch translation and CPU-based sequence translation examples.

README:

A Vietnamese-English Neural Machine Translation System

Our pre-trained VinAI Translate models are state-of-the-art text-to-text translation models for Vietnamese-to-English and English-to-Vietnamese, respectively. The general architecture and experimental results of the pre-trained models can be found in our VinAI Translate system paper:

@inproceedings{vinaitranslate,
title     = {{A Vietnamese-English Neural Machine Translation System}},
author    = {Thien Hai Nguyen and 
             Tuan-Duy H. Nguyen and 
             Duy Phung and 
             Duy Tran-Cong Nguyen and 
             Hieu Minh Tran and 
             Manh Luong and 
             Tin Duy Vo and 
             Hung Hai Bui and 
             Dinh Phung and 
             Dat Quoc Nguyen},
booktitle = {Proceedings of the 23rd Annual Conference of the International Speech Communication Association: Show and Tell (INTERSPEECH)},
year      = {2022}
}

Please CITE our paper whenever the pre-trained models or the system are used to help produce published results or incorporated into other software.

Pre-trained models

Model Max length License Note
vinai/vinai-translate-vi2en-v2 1024 GNU AGPL-3.0 Further fine-tuning vinai/vinai-translate-vi2en on a combination with mTet-v2 data (with duplication removal)
vinai/vinai-translate-en2vi-v2 1024 GNU AGPL-3.0 Further fine-tuning vinai/vinai-translate-en2vi on a combination with mTet-v2 data (with duplication removal)
vinai/vinai-translate-vi2en 1024 GNU AGPL-3.0 448M parameters
vinai/vinai-translate-en2vi 1024 GNU AGPL-3.0 448M parameters

Evaluation

Screen Shot 2023-11-17 at 10 07 05 pm

*: Data leakage issue where ~10K training pairs in mTet-v2 appear in the PhoMT test set.

See HERE for evaluation scripts of VinAI Translate and VietAI envit5-translation.

Using VinAI Translate in transformers

Vietnamese-to-English translation

GPU-based batch translation example

import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer_vi2en = AutoTokenizer.from_pretrained("vinai/vinai-translate-vi2en-v2", src_lang="vi_VN")
model_vi2en = AutoModelForSeq2SeqLM.from_pretrained("vinai/vinai-translate-vi2en-v2")
device_vi2en = torch.device("cuda")
model_vi2en.to(device_vi2en)


def translate_vi2en(vi_texts: str) -> str:
    input_ids = tokenizer_vi2en(vi_texts, padding=True, return_tensors="pt").to(device_vi2en)
    output_ids = model_vi2en.generate(
        **input_ids,
        decoder_start_token_id=tokenizer_vi2en.lang_code_to_id["en_XX"],
        num_return_sequences=1,
        num_beams=5,
        early_stopping=True
    )
    en_texts = tokenizer_vi2en.batch_decode(output_ids, skip_special_tokens=True)
    return en_texts

# The input may consist of multiple text sequences, with the number of text sequences in the input ranging from 1 up to 8, 16, 32, or even higher, depending on the GPU memory.
vi_texts = ["Cô cho biết: trước giờ tôi không đến phòng tập công cộng, mà tập cùng giáo viên Yoga riêng hoặc tự tập ở nhà.",
            "Khi tập thể dục trong không gian riêng tư, tôi thoải mái dễ chịu hơn.",
            "cô cho biết trước giờ tôi không đến phòng tập công cộng mà tập cùng giáo viên yoga riêng hoặc tự tập ở nhà khi tập thể dục trong không gian riêng tư tôi thoải mái dễ chịu hơn"]
print(translate_vi2en(vi_texts))

CPU-based sequence translation example

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer_vi2en = AutoTokenizer.from_pretrained("vinai/vinai-translate-vi2en-v2", src_lang="vi_VN")
model_vi2en = AutoModelForSeq2SeqLM.from_pretrained("vinai/vinai-translate-vi2en-v2")

def translate_vi2en(vi_text: str) -> str:
    input_ids = tokenizer_vi2en(vi_text, return_tensors="pt").input_ids
    output_ids = model_vi2en.generate(
        input_ids,
        decoder_start_token_id=tokenizer_vi2en.lang_code_to_id["en_XX"],
        num_return_sequences=1,
        num_beams=5,
        early_stopping=True
    )
    en_text = tokenizer_vi2en.batch_decode(output_ids, skip_special_tokens=True)
    en_text = " ".join(en_text)
    return en_text

vi_text = "Cô cho biết: trước giờ tôi không đến phòng tập công cộng, mà tập cùng giáo viên Yoga riêng hoặc tự tập ở nhà. Khi tập thể dục trong không gian riêng tư, tôi thoải mái dễ chịu hơn."
print(translate_vi2en(vi_text))

vi_text = "cô cho biết trước giờ tôi không đến phòng tập công cộng mà tập cùng giáo viên yoga riêng hoặc tự tập ở nhà khi tập thể dục trong không gian riêng tư tôi thoải mái dễ chịu hơn"
print(translate_vi2en(vi_text))

English-to-Vietnamese translation

GPU-based batch translation example

import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer_en2vi = AutoTokenizer.from_pretrained("vinai/vinai-translate-en2vi-v2", src_lang="en_XX")
model_en2vi = AutoModelForSeq2SeqLM.from_pretrained("vinai/vinai-translate-en2vi-v2")
device_en2vi = torch.device("cuda")
model_en2vi.to(device_en2vi)


def translate_en2vi(en_texts: str) -> str:
    input_ids = tokenizer_en2vi(en_texts, padding=True, return_tensors="pt").to(device_en2vi)
    output_ids = model_en2vi.generate(
        **input_ids,
        decoder_start_token_id=tokenizer_en2vi.lang_code_to_id["vi_VN"],
        num_return_sequences=1,
        num_beams=5,
        early_stopping=True
    )
    vi_texts = tokenizer_en2vi.batch_decode(output_ids, skip_special_tokens=True)
    return vi_texts

# The input may consist of multiple text sequences, with the number of text sequences in the input ranging from 1 up to 8, 16, 32, or even higher, depending on the GPU memory.
en_texts = ["I haven't been to a public gym before.",
            "When I exercise in a private space, I feel more comfortable.",
            "i haven't been to a public gym before when i exercise in a private space i feel more comfortable"]
print(translate_en2vi(en_texts))

CPU-based sequence translation example

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer_en2vi = AutoTokenizer.from_pretrained("vinai/vinai-translate-en2vi-v2", src_lang="en_XX")
model_en2vi = AutoModelForSeq2SeqLM.from_pretrained("vinai/vinai-translate-en2vi-v2")

def translate_en2vi(en_text: str) -> str:
    input_ids = tokenizer_en2vi(en_text, return_tensors="pt").input_ids
    output_ids = model_en2vi.generate(
        input_ids,
        decoder_start_token_id=tokenizer_en2vi.lang_code_to_id["vi_VN"],
        num_return_sequences=1,
        num_beams=5,
        early_stopping=True
    )
    vi_text = tokenizer_en2vi.batch_decode(output_ids, skip_special_tokens=True)
    vi_text = " ".join(vi_text)
    return vi_text

en_text = "I haven't been to a public gym before. When I exercise in a private space, I feel more comfortable."
print(translate_en2vi(en_text))

en_text = "i haven't been to a public gym before when i exercise in a private space i feel more comfortable"
print(translate_en2vi(en_text))

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for VinAI_Translate

Similar Open Source Tools

For similar tasks

For similar jobs