yomo

yomo

πŸ¦– Stateful Serverless Framework for Geo-distributed Edge AI Infra. with function calling support, write once, run on any model.

Stars: 1677

Visit
 screenshot

YoMo is an open-source LLM Function Calling Framework for building Geo-distributed AI applications. It is built atop QUIC Transport Protocol and Stateful Serverless architecture, making AI applications low-latency, reliable, secure, and easy. The framework focuses on providing low-latency, secure, stateful serverless functions that can be distributed geographically to bring AI inference closer to end users. It offers features such as low-latency communication, security with TLS v1.3, stateful serverless functions for faster GPU processing, geo-distributed architecture, and a faster-than-real-time codec called Y3. YoMo enables developers to create and deploy stateful serverless functions for AI inference in a distributed manner, ensuring quick responses to user queries from various locations worldwide.

README:

YoMo Go codecov Discord

YoMo is an open-source LLM Function Calling Framework for building Geo-distributed AI applications. Built atop QUIC Transport Protocol and Stateful Serverless architecture, makes your AI application low-latency, reliable, secure, and easy.

πŸ’š We care about: Customer Experience in the Age of AI

🌢 Features

Features
⚑️ Low-latency Guaranteed by implementing atop QUIC QUIC
πŸ” Security TLS v1.3 on every data packet by design
πŸ“Έ Stateful Serverless Make your GPU serverless 10x faster
🌎 Geo-Distributed Architecture Brings AI inference closer to end users
πŸš€ Y3 a faster than real-time codec

πŸš€ Getting Started

Let's implement a function calling with sfn-currency-converter:

Step 1. Install CLI

curl -fsSL https://get.yomo.run | sh

Verify if the CLI was installed successfully

yomo version

Step 2. Start the server

Prepare the configuration as my-agent.yaml

name: ai-zipper
host: 0.0.0.0
port: 9000

auth:
  type: token
  token: SECRET_TOKEN

bridge:
  ai:
    server:
      addr: 0.0.0.0:8000 ## Restful API endpoint
      provider: openai ## LLM API Service we will use

    providers:
      azopenai:
        api_endpoint: https://<RESOURCE>.openai.azure.com
        deployment_id: <DEPLOYMENT_ID>
        api_key: <API_KEY>
        api_version: <API_VERSION>

      openai:
        api_key: sk-xxxxxxxxxxxxxxxxxxxxxxxxxxx
        model: gpt-4-1106-preview

      gemini:
        api_key: <GEMINI_API_KEY>

      cloudflare_azure:
        endpoint: https://gateway.ai.cloudflare.com/v1/<CF_GATEWAY_ID>/<CF_GATEWAY_NAME>
        api_key: <AZURE_API_KEY>
        resource: <AZURE_OPENAI_RESOURCE>
        deployment_id: <AZURE_OPENAI_DEPLOYMENT_ID>
        api_version: 2023-12-01-preview

Start the server:

YOMO_LOG_LEVEL=debug yomo serve -c my-agent.yaml

Step 3. Write the function

First, let's define what this function do and how's the parameters required, these will be combined to prompt when invoking LLM.

type Parameter struct {
	Domain string `json:"domain" jsonschema:"description=Domain of the website,example=example.com"`
}

func Description() string {
	return `if user asks ip or network latency of a domain, you should return the result of the giving domain. try your best to dissect user expressions to infer the right domain names`
}

func InputSchema() any {
	return &Parameter{}
}

Create a Stateful Serverless Function to get the IP and Latency of a domain:

func Handler(ctx serverless.Context) {
	var msg Parameter
	ctx.ReadLLMArguments(&msg)

	// get ip of the domain
	ips, _ := net.LookupIP(msg.Domain)

	// get ip[0] ping latency
	pinger, _ := ping.NewPinger(ips[0].String())
	pinger.Count = 3
	pinger.Run()
	stats := pinger.Statistics()

	val := fmt.Sprintf("domain %s has ip %s with average latency %s", msg.Domain, ips[0], stats.AvgRtt)
	ctx.WriteLLMResult(val)
}

Finally, let's run it

$ yomo run app.go

time=2024-03-19T21:43:30.583+08:00 level=INFO msg="connected to zipper" component=StreamFunction sfn_id=B0ttNSEKLSgMjXidB11K1 sfn_name=fn-get-ip-from-domain zipper_addr=localhost:9000
time=2024-03-19T21:43:30.584+08:00 level=INFO msg="register ai function success" component=StreamFunction sfn_id=B0ttNSEKLSgMjXidB11K1 sfn_name=fn-get-ip-from-domain zipper_addr=localhost:9000 name=fn-get-ip-from-domain tag=16

Done, let's have a try

$ curl -i http://127.0.0.1:9000/v1/chat/completions -H "Content-Type: application/json" -d '{
  "messages": [
    {
      "role": "system",
      "content": "You are a test assistant."
    },
    {
      "role": "user",
      "content": "Compare website speed between Nike and Puma"
    }
  ],
  "stream": false
}'

HTTP/1.1 200 OK
Content-Length: 944
Connection: keep-alive
Content-Type: application/json
Date: Tue, 19 Mar 2024 13:30:14 GMT
Keep-Alive: timeout=4
Proxy-Connection: keep-alive

{
  "Content": "Based on the data provided for the domains nike.com and puma.com which include IP addresses and average latencies, we can infer the following about their website speeds:
  - Nike.com has an IP address of 13.225.183.84 with an average latency of 65.568333 milliseconds.
  - Puma.com has an IP address of 151.101.194.132 with an average latency of 54.563666 milliseconds.
  
  Comparing these latencies, Puma.com is faster than Nike.com as it has a lower average latency. 
  
  Please be aware, however, that website speed can be influenced by many factors beyond latency, such as server processing time, content size, and delivery networks among others. To get a more comprehensive understanding of website speed, you would need to consider additional metrics and possibly conductreal-time speed tests.",
  "FinishReason": "stop"
}

Full Example Code

Full LLM Function Calling Codes

πŸ“š Documentation

Read more about YoMo at yomo.run/docs.

YoMo ❀️ Vercel, our documentation website is

Vercel Logo

🎯 Focuses on Geo-distributed AI Inference Infra

It’s no secret that today’s users want instant AI inference, every AI application is more powerful when it response quickly. But, currently, when we talk about distribution, it represents distribution in data center. The AI model is far away from their users from all over the world.

If an application can be deployed anywhere close to their end users, solve the problem, this is Geo-distributed System Architecture:

yomo geo-distributed system

🦸 Contributing

First off, thank you for considering making contributions. It's people like you that make YoMo better. There are many ways in which you can participate in the project, for example:

  • File a bug report. Be sure to include information like what version of YoMo you are using, what your operating system is, and steps to recreate the bug.
  • Suggest a new feature.
  • Read our contributing guidelines to learn about what types of contributions we are looking for.
  • We have also adopted a code of conduct that we expect project participants to adhere to.

License

Apache License 2.0

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for yomo

Similar Open Source Tools

For similar tasks

For similar jobs