kernel-memory
RAG architecture: index and query any data using LLM and natural language, track sources, show citations, asynchronous memory patterns.
Stars: 1526
Kernel Memory (KM) is a multi-modal AI Service specialized in the efficient indexing of datasets through custom continuous data hybrid pipelines, with support for Retrieval Augmented Generation (RAG), synthetic memory, prompt engineering, and custom semantic memory processing. KM is available as a Web Service, as a Docker container, a Plugin for ChatGPT/Copilot/Semantic Kernel, and as a .NET library for embedded applications. Utilizing advanced embeddings and LLMs, the system enables Natural Language querying for obtaining answers from the indexed data, complete with citations and links to the original sources. Designed for seamless integration as a Plugin with Semantic Kernel, Microsoft Copilot and ChatGPT, Kernel Memory enhances data-driven features in applications built for most popular AI platforms.
README:
This repository presents best practices and a reference implementation for Memory in specific AI and LLMs application scenarios. Please note that the code provided serves as a demonstration and is not an officially supported Microsoft offering.
Kernel Memory (KM) is a multi-modal AI Service specialized in the efficient indexing of datasets through custom continuous data hybrid pipelines, with support for Retrieval Augmented Generation (RAG), synthetic memory, prompt engineering, and custom semantic memory processing.
KM is available as a Web Service, as a Docker container, a Plugin for ChatGPT/Copilot/Semantic Kernel, and as a .NET library for embedded applications.
Utilizing advanced embeddings and LLMs, the system enables Natural Language querying for obtaining answers from the indexed data, complete with citations and links to the original sources.
Kernel Memory is designed for seamless integration as a Plugin with Semantic Kernel, Microsoft Copilot and ChatGPT.
Depending on your scenarios, you might want to run all the code remotely through an asynchronous and scalable service, or locally inside your process.
If you're importing small files, and use only .NET and can block the application process while importing documents, then local-in-process execution can be fine, using the MemoryServerless described below.
However, if you are in one of these scenarios:
- My app is written in TypeScript, Java, Rust, or some other language
- I'd just like a web service to import data and send questions to answer
- I'm importing big documents that can require minutes to process, and I don't want to block the user interface
- I need memory import to run independently, supporting failures and retry logic
- I want to define custom pipelines mixing multiple languages like Python, TypeScript, etc
then you're likely looking for a Memory Service, and you can deploy Kernel Memory as a backend service, using the default ingestion logic, or your custom workflow including steps coded in Python/TypeScript/Java/etc., leveraging the asynchronous non-blocking memory encoding process, uploading documents and asking questions using the MemoryWebClient.
Here you can find a complete set of instruction about how to run the Kernel Memory service.
Kernel Memory can be deployed in various configurations, including as a Service in Azure. To learn more about deploying Kernel Memory in Azure, please refer to the Azure deployment guide. For detailed instructions on deploying to Azure, you can check the infrastructure documentation.
If you are already familiar with these resources, you can quickly deploy by clicking the following button.
Kernel Memory works and scales at best when running as an asynchronous Web Service, allowing to ingest thousands of documents and information without blocking your app.
However, Kernel Memory can also run in serverless mode, embedding MemoryServerless
class instance in .NET
backend/console/desktop apps in synchronous mode.
Each request is processed immediately, although calling clients are responsible for handling transient errors.
var memory = new KernelMemoryBuilder() .WithOpenAIDefaults(Environment.GetEnvironmentVariable("OPENAI_API_KEY")) .Build<MemoryServerless>(); // Import a file await memory.ImportDocumentAsync("meeting-transcript.docx", tags: new() { { "user", "Blake" } }); // Import multiple files and apply multiple tags await memory.ImportDocumentAsync(new Document("file001") .AddFile("business-plan.docx") .AddFile("project-timeline.pdf") .AddTag("user", "Blake") .AddTag("collection", "business") .AddTag("collection", "plans") .AddTag("fiscalYear", "2023"));
var answer1 = await memory.AskAsync("How many people attended the meeting?"); var answer2 = await memory.AskAsync("what's the project timeline?", filter: new MemoryFilter().ByTag("user", "Blake"));
The example leverages the default documents ingestion pipeline:
- Extract text: recognize the file format and extract the information
- Partition the text in small chunks, to optimize search
- Extract embedding using an LLM embedding generator
- Save embedding into a vector index such as Azure AI Search, Qdrant or other DBs.
In the example, memories are organized by users using tags, safeguarding private information. Furthermore, memories can be categorized and structured using tags, enabling efficient search and retrieval through faceted navigation.
All memories and answers are fully correlated to the data provided. When producing an answer, Kernel Memory includes all the information needed to verify its accuracy:
await memory.ImportFileAsync("NASA-news.pdf"); var answer = await memory.AskAsync("Any news from NASA about Orion?"); Console.WriteLine(answer.Result + "/n"); foreach (var x in answer.RelevantSources) { Console.WriteLine($" * {x.SourceName} -- {x.Partitions.First().LastUpdate:D}"); }Yes, there is news from NASA about the Orion spacecraft. NASA has invited the media to see a new test version [......] For more information about the Artemis program, you can visit the NASA website.
- NASA-news.pdf -- Tuesday, August 1, 2023
Kernel Memory (KM) is a service built on the feedback received and lessons learned from developing Semantic Kernel (SK) and Semantic Memory (SM). It provides several features that would otherwise have to be developed manually, such as storing files, extracting text from files, providing a framework to secure users' data, etc. The KM codebase is entirely in .NET, which eliminates the need to write and maintain features in multiple languages. As a service, KM can be used from any language, tool, or platform, e.g. browser extensions and ChatGPT assistants.
Semantic Memory (SM) is a library for C#, Python, and Java that wraps direct calls to databases and supports vector search. It was developed as part of the Semantic Kernel (SK) project and serves as the first public iteration of long-term memory. The core library is maintained in three languages, while the list of supported storage engines (known as "connectors") varies across languages.
Here's comparison table:
Feature | Kernel Memory | Semantic Memory |
---|---|---|
Runtime | Memory as a Service | Vector store library for .NET / Python / Java |
Data formats | Web pages, PDF, Images, Word, PowerPoint, Excel, Markdown, Text, JSON, HTML | Text only |
Search | Cosine similarity, Hybrid search, Filters with AND/OR conditions | Cosine similarity. Work in progress to support filters. |
Language support | Any language, command line tools, browser extensions, low-code/no-code apps, chatbots, assistants, etc. | .NET, Python, Java |
Storage engines | Azure AI Search, Elasticsearch, MongoDB Atlas, Postgres+pgvector, Qdrant, Redis, SQL Server, In memory KNN, On disk KNN. | Azure AI Search, Chroma, DuckDB, Kusto, Milvus, MongoDB, Pinecone, Postgres, Qdrant, Redis, SQLite, Weaviate |
File storage | Disk, Azure Blobs, AWS S3, MongoDB Atlas, In memory (volatile) | - |
RAG | Yes, with sources lookup | - |
Summarization | Yes | - |
OCR | Yes via Azure Document Intelligence | - |
Security Filters | Yes | No |
Large document ingestion | Yes, including async processing using queues (Azure Queues, RabbitMQ, File based or In memory queues) | - |
Document storage | Yes | - |
Custom storage schema | some DBs | Work in progress |
Vector DBs with internal embedding | Yes | - |
Concurrent write to multiple vector DBs | Yes | - |
LLMs | Azure OpenAI, OpenAI, Anthropic, Ollama, LLamaSharp, LM Studio, Semantic Kernel connectors | Azure OpenAI, OpenAI, Gemini, Hugging Face, ONNX, custom ones, etc. |
LLMs with dedicated tokenization | Yes | No |
Cloud deployment | Yes | - |
Web service with OpenAPI | Yes | - |
If you want to give the service a quick test, use the following command to start the Kernel Memory Service using OpenAI:
docker run -e OPENAI_API_KEY="..." -it --rm -p 9001:9001 kernelmemory/service
on Linux ARM/MacOS
docker run -e OPENAI_API_KEY="..." -it --rm -p 9001:9001 kernelmemory/service:latest-arm64
If you prefer using custom settings and services such as Azure OpenAI, Azure
Document Intelligence, etc., you should create an appsettings.Development.json
file overriding the default values set in appsettings.json
, or using the
configuration wizard included:
cd service/Service
dotnet run setup
Then run this command to start the Docker image with the configuration just created:
on Windows:
docker run --volume .\appsettings.Development.json:/app/appsettings.Production.json -it --rm -p 9001:9001 kernelmemory/service
on Linux (AMD64):
docker run --volume ./appsettings.Development.json:/app/appsettings.Production.json -it --rm -p 9001:9001 kernelmemory/service
on ARM64 / macOS:
docker run --volume ./appsettings.Development.json:/app/appsettings.Production.json -it --rm -p 9001:9001 kernelmemory/service:latest-arm64
#reference clients/WebClient/WebClient.csproj var memory = new MemoryWebClient("http://127.0.0.1:9001"); // <== URL where the web service is running // Import a file (default user) await memory.ImportDocumentAsync("meeting-transcript.docx"); // Import a file specifying a Document ID, User and Tags await memory.ImportDocumentAsync("business-plan.docx", new DocumentDetails("[email protected]", "file001") .AddTag("collection", "business") .AddTag("collection", "plans") .AddTag("fiscalYear", "2023"));
curl http://127.0.0.1:9001/ask -d'{"query":"Any news from NASA about Orion?"}' -H 'Content-Type: application/json'
{ "Query": "Any news from NASA about Orion?", "Text": "Yes, there is news from NASA about the Orion spacecraft. NASA has invited the media to see a new test version [......] For more information about the Artemis program, you can visit the NASA website.", "RelevantSources": [ { "Link": "...", "SourceContentType": "application/pdf", "SourceName": "file5-NASA-news.pdf", "Partitions": [ { "Text": "Skip to main content\nJul 28, 2023\nMEDIA ADVISORY M23-095\nNASA Invites Media to See Recovery Craft for\nArtemis Moon Mission\n(/sites/default/files/thumbnails/image/ksc-20230725-ph-fmx01_0003orig.jpg)\nAboard the [......] to Mars (/topics/moon-to-\nmars/),Orion Spacecraft (/exploration/systems/orion/index.html)\nNASA Invites Media to See Recovery Craft for Artemis Moon Miss... https://www.nasa.gov/press-release/nasa-invites-media-to-see-recov...\n2 of 3 7/28/23, 4:51 PM", "Relevance": 0.8430657, "SizeInTokens": 863, "LastUpdate": "2023-08-01T08:15:02-07:00" } ] } ] }
You can find a full example here.
On the other hand, if you need a custom data pipeline, you can also customize the steps, which will be handled by your custom business logic:
// Memory setup, e.g. how to calculate and where to store embeddings
var memoryBuilder = new KernelMemoryBuilder()
.WithoutDefaultHandlers()
.WithOpenAIDefaults(Environment.GetEnvironmentVariable("OPENAI_API_KEY"));
var memory = memoryBuilder.Build();
// Plug in custom .NET handlers
memory.Orchestrator.AddHandler<MyHandler1>("step1");
memory.Orchestrator.AddHandler<MyHandler2>("step2");
memory.Orchestrator.AddHandler<MyHandler3>("step3");
// Use the custom handlers with the memory object
await memory.ImportDocumentAsync(
new Document("mytest001")
.AddFile("file1.docx")
.AddFile("file2.pdf"),
steps: new[] { "step1", "step2", "step3" });
The API schema is available at http://127.0.0.1:9001/swagger/index.html when running the service locally with OpenAPI enabled.
- Collection of Jupyter notebooks with various scenarios
- Using Kernel Memory web service to upload documents and answer questions
- Importing files and asking question without running the service (serverless mode)
- Using KM Plugin for Semantic Kernel
- Customizations
- Processing files with custom logic (custom handlers) in serverless mode
- Processing files with custom logic (custom handlers) in asynchronous mode
- Customizing RAG and summarization prompts
- Custom partitioning/text chunking options
- Using a custom embedding/vector generator
- Using custom content decoders
- Using a custom web scraper to fetch web pages
- Writing and using a custom ingestion handler
- Using Context Parameters to customize RAG prompt during a request
- Local models and external connectors
- Upload files and ask questions from command line using curl
- Summarizing documents, using synthetic memories
- Hybrid Search with Azure AI Search
- Running a single asynchronous pipeline handler as a standalone service
- Integrating Memory with ASP.NET applications and controllers
- Sample code showing how to extract text from files
- .NET configuration and logging
- Expanding chunks retrieving adjacent partitions
- Creating a Memory instance without KernelMemoryBuilder
- Intent Detection
- Fetching data from Discord
- Test project using KM package from nuget.org
- .NET appsettings.json generator
- Curl script to upload files
- Curl script to ask questions
- Curl script to search documents
- Script to start Qdrant for development tasks
- Script to start Elasticsearch for development tasks
- Script to start MS SQL Server for development tasks
- Script to start Redis for development tasks
- Script to start RabbitMQ for development tasks
- Script to start MongoDB Atlas for development tasks
-
Microsoft.KernelMemory.WebClient: .NET web client to call a running instance of Kernel Memory web service.
-
Microsoft.KernelMemory.Core: Kernel Memory core library including all extensions, can be used to build custom pipelines and handlers, contains also the serverless client to use memory in a synchronous way without the web service.
-
Microsoft.KernelMemory.Service.AspNetCore: an extension to load Kernel Memory into your ASP.NET apps.
-
Microsoft.KernelMemory.SemanticKernelPlugin: a Memory plugin for Semantic Kernel, replacing the original Semantic Memory available in SK.
Kernel Memory service offers a Web API out of the box, including the OpenAPI swagger documentation that you can leverage to test the API and create custom web clients. For instance, after starting the service locally, see http://127.0.0.1:9001/swagger/index.html.
A .NET Web Client and a Semantic Kernel plugin are available, see the nugets packages above.
A python package with a Web Client and Semantic Kernel plugin will soon be available. We also welcome PR contributions to support more languages.
aaronpowell | afederici75 | akordowski | alexibraimov | alkampfergit | amomra |
anthonypuppo | chaelli | cherchyk | coryisakson | crickman | dependabot[bot] |
dluc | DM-98 | EelcoKoster | Foorcee | GraemeJones104 | jurepurgar |
JustinRidings | kbeaugrand | koteus | KSemenenko | lecramr | luismanez |
marcominerva | neel015 | pascalberger | pawarsum12 | pradeepr-roboticist | qihangnet |
roldengarm | setuc | slapointe | slorello89 | spenavajr | TaoChenOSU |
teresaqhoang | v-msamovendyuk | Valkozaur | vicperdana | walexee | westdavidr |
xbotter |
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for kernel-memory
Similar Open Source Tools
kernel-memory
Kernel Memory (KM) is a multi-modal AI Service specialized in the efficient indexing of datasets through custom continuous data hybrid pipelines, with support for Retrieval Augmented Generation (RAG), synthetic memory, prompt engineering, and custom semantic memory processing. KM is available as a Web Service, as a Docker container, a Plugin for ChatGPT/Copilot/Semantic Kernel, and as a .NET library for embedded applications. Utilizing advanced embeddings and LLMs, the system enables Natural Language querying for obtaining answers from the indexed data, complete with citations and links to the original sources. Designed for seamless integration as a Plugin with Semantic Kernel, Microsoft Copilot and ChatGPT, Kernel Memory enhances data-driven features in applications built for most popular AI platforms.
Scrapegraph-ai
ScrapeGraphAI is a web scraping Python library that utilizes LLM and direct graph logic to create scraping pipelines for websites and local documents. It offers various standard scraping pipelines like SmartScraperGraph, SearchGraph, SpeechGraph, and ScriptCreatorGraph. Users can extract information by specifying prompts and input sources. The library supports different LLM APIs such as OpenAI, Groq, Azure, and Gemini, as well as local models using Ollama. ScrapeGraphAI is designed for data exploration and research purposes, providing a versatile tool for extracting information from web pages and generating outputs like Python scripts, audio summaries, and search results.
openrl
OpenRL is an open-source general reinforcement learning research framework that supports training for various tasks such as single-agent, multi-agent, offline RL, self-play, and natural language. Developed based on PyTorch, the goal of OpenRL is to provide a simple-to-use, flexible, efficient and sustainable platform for the reinforcement learning research community. It supports a universal interface for all tasks/environments, single-agent and multi-agent tasks, offline RL training with expert dataset, self-play training, reinforcement learning training for natural language tasks, DeepSpeed, Arena for evaluation, importing models and datasets from Hugging Face, user-defined environments, models, and datasets, gymnasium environments, callbacks, visualization tools, unit testing, and code coverage testing. It also supports various algorithms like PPO, DQN, SAC, and environments like Gymnasium, MuJoCo, Atari, and more.
starwhale
Starwhale is an MLOps/LLMOps platform that brings efficiency and standardization to machine learning operations. It streamlines the model development lifecycle, enabling teams to optimize workflows around key areas like model building, evaluation, release, and fine-tuning. Starwhale abstracts Model, Runtime, and Dataset as first-class citizens, providing tailored capabilities for common workflow scenarios including Models Evaluation, Live Demo, and LLM Fine-tuning. It is an open-source platform designed for clarity and ease of use, empowering developers to build customized MLOps features tailored to their needs.
lance
Lance is a modern columnar data format optimized for ML workflows and datasets. It offers high-performance random access, vector search, zero-copy automatic versioning, and ecosystem integrations with Apache Arrow, Pandas, Polars, and DuckDB. Lance is designed to address the challenges of the ML development cycle, providing a unified data format for collection, exploration, analytics, feature engineering, training, evaluation, deployment, and monitoring. It aims to reduce data silos and streamline the ML development process.
rss-can
RSS Can is a tool designed to simplify and improve RSS feed management. It supports various systems and architectures, including Linux and macOS. Users can download the binary from the GitHub release page or use the Docker image for easy deployment. The tool provides CLI parameters and environment variables for customization. It offers features such as memory and Redis cache services, web service configuration, and rule directory settings. The project aims to support RSS pipeline flow, NLP tasks, integration with open-source software rules, and tools like a quick RSS rules generator.
llm-interface
LLM Interface is an npm module that streamlines interactions with various Large Language Model (LLM) providers in Node.js applications. It offers a unified interface for switching between providers and models, supporting 36 providers and hundreds of models. Features include chat completion, streaming, error handling, extensibility, response caching, retries, JSON output, and repair. The package relies on npm packages like axios, @google/generative-ai, dotenv, jsonrepair, and loglevel. Installation is done via npm, and usage involves sending prompts to LLM providers. Tests can be run using npm test. Contributions are welcome under the MIT License.
mobius
Mobius is an AI infra platform including realtime computing and training. It is built on Ray, a distributed computing framework, and provides a number of features that make it well-suited for online machine learning tasks. These features include: * **Cross Language**: Mobius can run in multiple languages (only Python and Java are supported currently) with high efficiency. You can implement your operator in different languages and run them in one job. * **Single Node Failover**: Mobius has a special failover mechanism that only needs to rollback the failed node itself, in most cases, to recover the job. This is a huge benefit if your job is sensitive about failure recovery time. * **AutoScaling**: Mobius can generate a new graph with different configurations in runtime without stopping the job. * **Fusion Training**: Mobius can combine TensorFlow/Pytorch and streaming, then building an e2e online machine learning pipeline. Mobius is still under development, but it has already been used to power a number of real-world applications, including: * A real-time recommendation system for a major e-commerce company * A fraud detection system for a large financial institution * A personalized news feed for a major news organization If you are interested in using Mobius for your own online machine learning projects, you can find more information in the documentation.
multi-agent-orchestrator
Multi-Agent Orchestrator is a flexible and powerful framework for managing multiple AI agents and handling complex conversations. It intelligently routes queries to the most suitable agent based on context and content, supports dual language implementation in Python and TypeScript, offers flexible agent responses, context management across agents, extensible architecture for customization, universal deployment options, and pre-built agents and classifiers. It is suitable for various applications, from simple chatbots to sophisticated AI systems, accommodating diverse requirements and scaling efficiently.
langfun
Langfun is a Python library that aims to make language models (LM) fun to work with. It enables a programming model that flows naturally, resembling the human thought process. Langfun emphasizes the reuse and combination of language pieces to form prompts, thereby accelerating innovation. Unlike other LM frameworks, which feed program-generated data into the LM, langfun takes a distinct approach: It starts with natural language, allowing for seamless interactions between language and program logic, and concludes with natural language and optional structured output. Consequently, langfun can aptly be described as Language as functions, capturing the core of its methodology.
docling
Docling is a tool that bundles PDF document conversion to JSON and Markdown in an easy, self-contained package. It can convert any PDF document to JSON or Markdown format, understand detailed page layout, reading order, recover table structures, extract metadata such as title, authors, references, and language, and optionally apply OCR for scanned PDFs. The tool is designed to be stable, lightning fast, and suitable for macOS and Linux environments.
glide
Glide is a cloud-native LLM gateway that provides a unified REST API for accessing various large language models (LLMs) from different providers. It handles LLMOps tasks such as model failover, caching, key management, and more, making it easy to integrate LLMs into applications. Glide supports popular LLM providers like OpenAI, Anthropic, Azure OpenAI, AWS Bedrock (Titan), Cohere, Google Gemini, OctoML, and Ollama. It offers high availability, performance, and observability, and provides SDKs for Python and NodeJS to simplify integration.
biochatter
Generative AI models have shown tremendous usefulness in increasing accessibility and automation of a wide range of tasks. This repository contains the `biochatter` Python package, a generic backend library for the connection of biomedical applications to conversational AI. It aims to provide a common framework for deploying, testing, and evaluating diverse models and auxiliary technologies in the biomedical domain. BioChatter is part of the BioCypher ecosystem, connecting natively to BioCypher knowledge graphs.
honey
Bee is an ORM framework that provides easy and high-efficiency database operations, allowing developers to focus on business logic development. It supports various databases and features like automatic filtering, partial field queries, pagination, and JSON format results. Bee also offers advanced functionalities like sharding, transactions, complex queries, and MongoDB ORM. The tool is designed for rapid application development in Java, offering faster development for Java Web and Spring Cloud microservices. The Enterprise Edition provides additional features like financial computing support, automatic value insertion, desensitization, dictionary value conversion, multi-tenancy, and more.
bee
Bee is an easy and high efficiency ORM framework that simplifies database operations by providing a simple interface and eliminating the need to write separate DAO code. It supports various features such as automatic filtering of properties, partial field queries, native statement pagination, JSON format results, sharding, multiple database support, and more. Bee also offers powerful functionalities like dynamic query conditions, transactions, complex queries, MongoDB ORM, cache management, and additional tools for generating distributed primary keys, reading Excel files, and more. The newest versions introduce enhancements like placeholder precompilation, default date sharding, ElasticSearch ORM support, and improved query capabilities.
TornadoVM
TornadoVM is a plug-in to OpenJDK and GraalVM that allows programmers to automatically run Java programs on heterogeneous hardware. TornadoVM targets OpenCL, PTX and SPIR-V compatible devices which include multi-core CPUs, dedicated GPUs (Intel, NVIDIA, AMD), integrated GPUs (Intel HD Graphics and ARM Mali), and FPGAs (Intel and Xilinx).
For similar tasks
kernel-memory
Kernel Memory (KM) is a multi-modal AI Service specialized in the efficient indexing of datasets through custom continuous data hybrid pipelines, with support for Retrieval Augmented Generation (RAG), synthetic memory, prompt engineering, and custom semantic memory processing. KM is available as a Web Service, as a Docker container, a Plugin for ChatGPT/Copilot/Semantic Kernel, and as a .NET library for embedded applications. Utilizing advanced embeddings and LLMs, the system enables Natural Language querying for obtaining answers from the indexed data, complete with citations and links to the original sources. Designed for seamless integration as a Plugin with Semantic Kernel, Microsoft Copilot and ChatGPT, Kernel Memory enhances data-driven features in applications built for most popular AI platforms.
swirl-search
Swirl is an open-source software that allows users to simultaneously search multiple content sources and receive AI-ranked results. It connects to various data sources, including databases, public data services, and enterprise sources, and utilizes AI and LLMs to generate insights and answers based on the user's data. Swirl is easy to use, requiring only the download of a YML file, starting in Docker, and searching with Swirl. Users can add credentials to preloaded SearchProviders to access more sources. Swirl also offers integration with ChatGPT as a configured AI model. It adapts and distributes user queries to anything with a search API, re-ranking the unified results using Large Language Models without extracting or indexing anything. Swirl includes five Google Programmable Search Engines (PSEs) to get users up and running quickly. Key features of Swirl include Microsoft 365 integration, SearchProvider configurations, query adaptation, synchronous or asynchronous search federation, optional subscribe feature, pipelining of Processor stages, results stored in SQLite3 or PostgreSQL, built-in Query Transformation support, matching on word stems and handling of stopwords, duplicate detection, re-ranking of unified results using Cosine Vector Similarity, result mixers, page through all results requested, sample data sets, optional spell correction, optional search/result expiration service, easily extensible Connector and Mixer objects, and a welcoming community for collaboration and support.
paper-qa
PaperQA is a minimal package for question and answering from PDFs or text files, providing very good answers with in-text citations. It uses OpenAI Embeddings to embed and search documents, and follows a process of embedding docs and queries, searching for top passages, creating summaries, scoring and selecting relevant summaries, putting summaries into prompt, and generating answers. Users can customize prompts and use various models for embeddings and LLMs. The tool can be used asynchronously and supports adding documents from paths, files, or URLs.
quick-start-connectors
Cohere's Build-Your-Own-Connector framework allows integration of Cohere's Command LLM via the Chat API endpoint to any datastore/software holding text information with a search endpoint. Enables user queries grounded in proprietary information. Use-cases include question/answering, knowledge working, comms summary, and research. Repository provides code for popular datastores and a template connector. Requires Python 3.11+ and Poetry. Connectors can be built and deployed using Docker. Environment variables set authorization values. Pre-commits for linting. Connectors tailored to integrate with Cohere's Chat API for creating chatbots. Connectors return documents as JSON objects for Cohere's API to generate answers with citations.
llm-rag-workshop
The LLM RAG Workshop repository provides a workshop on using Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) to generate and understand text in a human-like manner. It includes instructions on setting up the environment, indexing Zoomcamp FAQ documents, creating a Q&A system, and using OpenAI for generation based on retrieved information. The repository focuses on enhancing language model responses with retrieved information from external sources, such as document databases or search engines, to improve factual accuracy and relevance of generated text.
RAGMeUp
RAG Me Up is a generic framework that enables users to perform Retrieve and Generate (RAG) on their own dataset easily. It consists of a small server and UIs for communication. Best run on GPU with 16GB vRAM. Users can combine RAG with fine-tuning using LLaMa2Lang repository. The tool allows configuration for LLM, data, LLM parameters, prompt, and document splitting. Funding is sought to democratize AI and advance its applications.
local-genAI-search
Local-GenAI Search is a local generative search engine powered by the Llama3 model, allowing users to ask questions about their local files and receive concise answers with relevant document references. It utilizes MS MARCO embeddings for semantic search and can run locally on a 32GB laptop or computer. The tool can be used to index local documents, search for information, and provide generative search services through a user interface.
nanoPerplexityAI
nanoPerplexityAI is an open-source implementation of a large language model service that fetches information from Google. It involves a simple architecture where the user query is checked by the language model, reformulated for Google search, and an answer is generated and saved in a markdown file. The tool requires minimal setup and is designed for easy visualization of answers.
For similar jobs
weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.
LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.
VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.
kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.
PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.
tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.
spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.
Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.