
openlit
Open source platform for AI Engineering: OpenTelemetry-native LLM Observability, GPU Monitoring, Guardrails, Evaluations, Prompt Management, Vault, Playground. 🚀💻 Integrates with 50+ LLM Providers, VectorDBs, Agent Frameworks and GPUs.
Stars: 1883

OpenLIT is an OpenTelemetry-native GenAI and LLM Application Observability tool. It's designed to make the integration process of observability into GenAI projects as easy as pie – literally, with just **a single line of code**. Whether you're working with popular LLM Libraries such as OpenAI and HuggingFace or leveraging vector databases like ChromaDB, OpenLIT ensures your applications are monitored seamlessly, providing critical insights to improve performance and reliability.
README:
https://github.com/user-attachments/assets/6909bf4a-f5b4-4060-bde3-95e91fa36168
OpenLIT allows you to simplify your AI development workflow, especially for Generative AI and LLMs. It streamlines essential tasks like experimenting with LLMs, organizing and versioning prompts, and securely handling API keys. With just one line of code, you can enable OpenTelemetry-native observability, offering full-stack monitoring that includes LLMs, vector databases, and GPUs. This enables developers to confidently build AI features and applications, transitioning smoothly from testing to production.
This project proudly follows and maintains the Semantic Conventions with the OpenTelemetry community, consistently updating to align with the latest standards in Observability.
-
📈 Analytics Dashboard: Monitor your AI application's health and performance with detailed dashboards that track metrics, costs, and user interactions, providing a clear view of overall efficiency.
-
🔌 OpenTelemetry-native Observability SDKs: Vendor-neutral SDKs to send traces and metrics to your existing observability tools.
-
💲 Cost Tracking for Custom and Fine-Tuned Models: Tailor cost estimations for specific models using custom pricing files for precise budgeting.
-
🐛 Exceptions Monitoring Dashboard: Quickly spot and resolve issues by tracking common exceptions and errors with a dedicated monitoring dashboard.
-
💭 Prompt Management: Manage and version prompts using Prompt Hub for consistent and easy access across applications.
-
🔑 API Keys and Secrets Management: Securely handle your API keys and secrets centrally, avoiding insecure practices.
-
🎮 Experiment with different LLMs: Use OpenGround to explore, test and compare various LLMs side by side.
flowchart TB;
subgraph " "
direction LR;
subgraph " "
direction LR;
OpenLIT_SDK[OpenLIT SDK] -->|Sends Traces & Metrics| OTC[OpenTelemetry Collector];
OTC -->|Stores Data| ClickHouseDB[ClickHouse];
end
subgraph " "
direction RL;
OpenLIT_UI[OpenLIT] -->|Pulls Data| ClickHouseDB;
end
end
-
Git Clone OpenLIT Repository
Open your command line or terminal and run:
git clone [email protected]:openlit/openlit.git
-
Self-host using Docker
Deploy and run OpenLIT with the following command:
docker compose up -d
For instructions on installing in Kubernetes using Helm, refer to the Kubernetes Helm installation guide.
Open your command line or terminal and run:
pip install openlit
For instructions on using the TypeScript SDK, visit the TypeScript SDK Installation guide.
Integrate OpenLIT into your AI applications by adding the following lines to your code.
import openlit
openlit.init()
Configure the telemetry data destination as follows:
Purpose | Parameter/Environment Variable | For Sending to OpenLIT |
---|---|---|
Send data to an HTTP OTLP endpoint |
otlp_endpoint or OTEL_EXPORTER_OTLP_ENDPOINT
|
"http://127.0.0.1:4318" |
Authenticate telemetry backends |
otlp_headers or OTEL_EXPORTER_OTLP_HEADERS
|
Not required by default |
💡 Info: If the
otlp_endpoint
orOTEL_EXPORTER_OTLP_ENDPOINT
is not provided, the OpenLIT SDK will output traces directly to your console, which is recommended during the development phase.
Initialize using Function Arguments
Add the following two lines to your application code:
import openlit
openlit.init(
otlp_endpoint="http://127.0.0.1:4318",
)
Initialize using Environment Variables
Add the following two lines to your application code:
import openlit
openlit.init()
Then, configure the your OTLP endpoint using environment variable:
export OTEL_EXPORTER_OTLP_ENDPOINT = "http://127.0.0.1:4318"
With the Observability data now being collected and sent to OpenLIT, the next step is to visualize and analyze this data to get insights into your AI application's performance, behavior, and identify areas of improvement.
Just head over to OpenLIT at 127.0.0.1:3000
on your browser to start exploring. You can login using the default credentials:
-
Email:
[email protected]
-
Password:
openlituser
We are dedicated to continuously improving OpenLIT. Here's a look at what's been accomplished and what's on the horizon:
Feature | Status |
---|---|
OpenTelemetry-native Observability SDK for Tracing and Metrics | ✅ Completed |
OpenTelemetry-native GPU Monitoring | ✅ Completed |
Exceptions and Error Monitoring | ✅ Completed |
Prompt Hub for Managing and Versioning Prompts | ✅ Completed |
OpenGround for Testing and Comparing LLMs | ✅ Completed |
Vault for Central Management of LLM API Keys and Secrets | ✅ Completed |
Cost Tracking for Custom Models | ✅ Completed |
Real-Time Guardrails Implementation | ✅ Completed |
Programmatic Evaluation for LLM Response | ✅ Completed |
Auto-Evaluation Metrics Based on Usage | 🔜 Coming Soon |
Human Feedback for LLM Events | 🔜 Coming Soon |
Dataset Generation Based on LLM Events | 🔜 Coming Soon |
Search over Traces | 🔜 Coming Soon |
Whether it's big or small, we love contributions 💚. Check out our Contribution guide to get started
Unsure where to start? Here are a few ways to get involved:
- Join our Slack or Discord community to discuss ideas, share feedback, and connect with both our team and the wider OpenLIT community.
Your input helps us grow and improve, and we're here to support you every step of the way.
Connect with OpenLIT community and maintainers for support, discussions, and updates:
- 🌟 If you like it, leave a star on our GitHub.
- 🌍 Join our Slack or Discord community for live interactions and questions.
- 🐞 Report bugs on our GitHub Issues to help us improve OpenLIT.
- 𝕏 Follow us on X for the latest updates and news.
OpenLIT is available under the Apache-2.0 license.
This project is proudly supported by:
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for openlit
Similar Open Source Tools

openlit
OpenLIT is an OpenTelemetry-native GenAI and LLM Application Observability tool. It's designed to make the integration process of observability into GenAI projects as easy as pie – literally, with just **a single line of code**. Whether you're working with popular LLM Libraries such as OpenAI and HuggingFace or leveraging vector databases like ChromaDB, OpenLIT ensures your applications are monitored seamlessly, providing critical insights to improve performance and reliability.

EvoAgentX
EvoAgentX is an open-source framework for building, evaluating, and evolving LLM-based agents or agentic workflows in an automated, modular, and goal-driven manner. It enables developers and researchers to move beyond static prompt chaining or manual workflow orchestration by introducing a self-evolving agent ecosystem. The framework includes features such as agent workflow autoconstruction, built-in evaluation, self-evolution engine, plug-and-play compatibility, comprehensive built-in tools, memory module support, and human-in-the-loop interactions.

biochatter
Generative AI models have shown tremendous usefulness in increasing accessibility and automation of a wide range of tasks. This repository contains the `biochatter` Python package, a generic backend library for the connection of biomedical applications to conversational AI. It aims to provide a common framework for deploying, testing, and evaluating diverse models and auxiliary technologies in the biomedical domain. BioChatter is part of the BioCypher ecosystem, connecting natively to BioCypher knowledge graphs.

airunner
AI Runner is a multi-modal AI interface that allows users to run open-source large language models and AI image generators on their own hardware. The tool provides features such as voice-based chatbot conversations, text-to-speech, speech-to-text, vision-to-text, text generation with large language models, image generation capabilities, image manipulation tools, utility functions, and more. It aims to provide a stable and user-friendly experience with security updates, a new UI, and a streamlined installation process. The application is designed to run offline on users' hardware without relying on a web server, offering a smooth and responsive user experience.

deep-chat
Deep Chat is a fully customizable AI chat component that can be injected into your website with minimal to no effort. Whether you want to create a chatbot that leverages popular APIs such as ChatGPT or connect to your own custom service, this component can do it all! Explore deepchat.dev to view all of the available features, how to use them, examples and more!

Starmoon
Starmoon is an affordable, compact AI-enabled device that can understand and respond to your emotions with empathy. It offers supportive conversations and personalized learning assistance. The device is cost-effective, voice-enabled, open-source, compact, and aims to reduce screen time. Users can assemble the device themselves using off-the-shelf components and deploy it locally for data privacy. Starmoon integrates various APIs for AI language models, speech-to-text, text-to-speech, and emotion intelligence. The hardware setup involves components like ESP32S3, microphone, amplifier, speaker, LED light, and button, along with software setup instructions for developers. The project also includes a web app, backend API, and background task dashboard for monitoring and management.

openrl
OpenRL is an open-source general reinforcement learning research framework that supports training for various tasks such as single-agent, multi-agent, offline RL, self-play, and natural language. Developed based on PyTorch, the goal of OpenRL is to provide a simple-to-use, flexible, efficient and sustainable platform for the reinforcement learning research community. It supports a universal interface for all tasks/environments, single-agent and multi-agent tasks, offline RL training with expert dataset, self-play training, reinforcement learning training for natural language tasks, DeepSpeed, Arena for evaluation, importing models and datasets from Hugging Face, user-defined environments, models, and datasets, gymnasium environments, callbacks, visualization tools, unit testing, and code coverage testing. It also supports various algorithms like PPO, DQN, SAC, and environments like Gymnasium, MuJoCo, Atari, and more.

beeai-framework
BeeAI Framework is a versatile tool for building production-ready multi-agent systems. It offers flexibility in orchestrating agents, seamless integration with various models and tools, and production-grade controls for scaling. The framework supports Python and TypeScript libraries, enabling users to implement simple to complex multi-agent patterns, connect with AI services, and optimize token usage and resource management.

auto-news
Auto-News is an automatic news aggregator tool that utilizes Large Language Models (LLM) to pull information from various sources such as Tweets, RSS feeds, YouTube videos, web articles, Reddit, and journal notes. The tool aims to help users efficiently read and filter content based on personal interests, providing a unified reading experience and organizing information effectively. It features feed aggregation with summarization, transcript generation for videos and articles, noise reduction, task organization, and deep dive topic exploration. The tool supports multiple LLM backends, offers weekly top-k aggregations, and can be deployed on Linux/MacOS using docker-compose or Kubernetes.

superduperdb
SuperDuperDB is a Python framework for integrating AI models, APIs, and vector search engines directly with your existing databases, including hosting of your own models, streaming inference and scalable model training/fine-tuning. Build, deploy and manage any AI application without the need for complex pipelines, infrastructure as well as specialized vector databases, and moving our data there, by integrating AI at your data's source: - Generative AI, LLMs, RAG, vector search - Standard machine learning use-cases (classification, segmentation, regression, forecasting recommendation etc.) - Custom AI use-cases involving specialized models - Even the most complex applications/workflows in which different models work together SuperDuperDB is **not** a database. Think `db = superduper(db)`: SuperDuperDB transforms your databases into an intelligent platform that allows you to leverage the full AI and Python ecosystem. A single development and deployment environment for all your AI applications in one place, fully scalable and easy to manage.

coreply
Coreply is an open-source Android app that provides texting suggestions while typing, enhancing the typing experience with intelligent, context-aware suggestions. It supports various texting apps and offers real-time AI suggestions, customizable LLM settings, and ensures no data collection. Users can install the app, configure it with an API key, and start receiving suggestions while typing in messaging apps. The tool supports different AI models from providers like OpenAI, Google AI Studio, Openrouter, Groq, and Codestral for chat completion and fill-in-the-middle tasks.

yolo-flutter-app
Ultralytics YOLO for Flutter is a Flutter plugin that allows you to integrate Ultralytics YOLO computer vision models into your mobile apps. It supports both Android and iOS platforms, providing APIs for object detection and image classification. The plugin leverages Flutter Platform Channels for seamless communication between the client and host, handling all processing natively. Before using the plugin, you need to export the required models in `.tflite` and `.mlmodel` formats. The plugin provides support for tasks like detection and classification, with specific instructions for Android and iOS platforms. It also includes features like camera preview and methods for object detection and image classification on images. Ultralytics YOLO thrives on community collaboration and offers different licensing paths for open-source and commercial use cases.

pipecat
Pipecat is an open-source framework designed for building generative AI voice bots and multimodal assistants. It provides code building blocks for interacting with AI services, creating low-latency data pipelines, and transporting audio, video, and events over the Internet. Pipecat supports various AI services like speech-to-text, text-to-speech, image generation, and vision models. Users can implement new services and contribute to the framework. Pipecat aims to simplify the development of applications like personal coaches, meeting assistants, customer support bots, and more by providing a complete framework for integrating AI services.

opik
Comet Opik is a repository containing two main services: a frontend and a backend. It provides a Python SDK for easy installation. Users can run the full application locally with minikube, following specific installation prerequisites. The repository structure includes directories for applications like Opik backend, with detailed instructions available in the README files. Users can manage the installation using simple k8s commands and interact with the application via URLs for checking the running application and API documentation. The repository aims to facilitate local development and testing of Opik using Kubernetes technology.

thinc
Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models.

cognee
Cognee is an open-source framework designed for creating self-improving deterministic outputs for Large Language Models (LLMs) using graphs, LLMs, and vector retrieval. It provides a platform for AI engineers to enhance their models and generate more accurate results. Users can leverage Cognee to add new information, utilize LLMs for knowledge creation, and query the system for relevant knowledge. The tool supports various LLM providers and offers flexibility in adding different data types, such as text files or directories. Cognee aims to streamline the process of working with LLMs and improving AI models for better performance and efficiency.
For similar tasks

openlit
OpenLIT is an OpenTelemetry-native GenAI and LLM Application Observability tool. It's designed to make the integration process of observability into GenAI projects as easy as pie – literally, with just **a single line of code**. Whether you're working with popular LLM Libraries such as OpenAI and HuggingFace or leveraging vector databases like ChromaDB, OpenLIT ensures your applications are monitored seamlessly, providing critical insights to improve performance and reliability.

doku
OpenLIT is an OpenTelemetry-native GenAI and LLM Application Observability tool. It's designed to make the integration process of observability into GenAI projects as easy as pie – literally, with just a single line of code. Whether you're working with popular LLM Libraries such as OpenAI and HuggingFace or leveraging vector databases like ChromaDB, OpenLIT ensures your applications are monitored seamlessly, providing critical insights to improve performance and reliability.

openllmetry
OpenLLMetry is a set of extensions built on top of OpenTelemetry that gives you complete observability over your LLM application. Because it uses OpenTelemetry under the hood, it can be connected to your existing observability solutions - Datadog, Honeycomb, and others. It's built and maintained by Traceloop under the Apache 2.0 license. The repo contains standard OpenTelemetry instrumentations for LLM providers and Vector DBs, as well as a Traceloop SDK that makes it easy to get started with OpenLLMetry, while still outputting standard OpenTelemetry data that can be connected to your observability stack. If you already have OpenTelemetry instrumented, you can just add any of our instrumentations directly.
For similar jobs

weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.

LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.

VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.

kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.

PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.

tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.

spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.

Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.