![bedrock-engineer](/statics/github-mark.png)
bedrock-engineer
Bedrock Engineer is an AI assistant of software development tasks. This tool combines the capabilities of a large language model with practical file system operations, web search functionality.
Stars: 111
![screenshot](/screenshots_githubs/daisuke-awaji-bedrock-engineer.jpg)
Bedrock Engineer is an AI assistant for software development tasks powered by Amazon Bedrock. It combines large language models with file system operations and web search functionality to support development processes. The autonomous AI agent provides interactive chat, file system operations, web search, project structure management, code analysis, code generation, data analysis, agent and tool customization, chat history management, and multi-language support. Users can select agents, customize them, select tools, and customize tools. The tool also includes a website generator for React.js, Vue.js, Svelte.js, and Vanilla.js, with support for inline styling, Tailwind.css, and Material UI. Users can connect to design system data sources and generate AWS Step Functions ASL definitions.
README:
Bedrock Enginner is an AI assistant for software development tasks powered by Amazon Bedrock. This autonomous AI agent combines the capabilities of large language models with practical file system operations and web search functionality to support your development process.
https://github.com/user-attachments/assets/788583b6-148b-4e9d-9015-c24ad4be6162
It is still under development and no packaged binaries have been created. Please build it locally and use it.
First, install the npm modules:
npm install
Then, build application package
npm run build:mac
or
npm run build:win
or
npm run build:linux
Use the application stored in the dist
directory.
The autonomous AI agent capable of development assists your development process. It provides functionality similar to AI assistants like Cline, but with its own UI that doesn't depend on editors like VS Code. This enables richer diagramming and interactive experiences in Bedrock Engineer's agent chat feature. Additionally, with agent customization capabilities, you can utilize agents for use cases beyond development.
- π¬ Interactive chat interface with human-like Amazon Nova, Claude 3.5, and Meta llama models
- π File system operations (create folders, files, read/write files)
- π Web search capabilities using Tavily API
- ποΈ Project structure creation and management
- π§ Code analysis and improvement suggestions
- π Code generation and execution
- π Data analysis and visualization
- π‘ Agent customization and management
- π οΈ Tool customization and management
- π Chat history management
- π Multi-language support
![]() |
![]() |
---|---|
Code analysis and diagramming | Web search capabilities using Tavily API |
Choose an agent from the menu in the top left. By default, it includes a Software Developer specialized in general software development, a Programming Mentor that assists with programming learning, and a Product Designer that supports the conceptual stage of services and products.
Click the βοΈ icon in the top right to customize agent settings. Enter the agent's name, description, and system prompt. The system prompt is a crucial element that determines the agent's behavior. By clearly defining the agent's purpose, regulations, role, and when to use available tools, you can obtain more appropriate responses.
Click the Tools icon in the bottom left to select the tools available to the agent. Refer to this page for each tool's role.
The executeCommand tool allows you to register commands that can be executed in the CLI. Unregistered commands cannot be executed. You can extend the agent's capabilities by registering commands that connect to databases, execute APIs, or call other AI agents.
Generate and preview website source code in real-time. Currently supports the following libraries, and you can interactively generate code by providing additional instructions:
- React.js (w/ Typescript)
- Vue.js (w/ Typescript)
- Svelte.js
- Vanilla.js
Here are examples of screens generated by the Website Generator:
![]() |
![]() |
![]() |
---|---|---|
House Plant E-commerce Site | Data Visualization | Healthcare Blog |
The following styles are also supported as presets:
- Inline styling
- Tailwind.css
- Material UI (React mode only)
By connecting to Amazon Bedrock's Knowledge Base, you can generate websites referencing any design system, project source code, or website styles.
You need to store source code and crawled web pages in the knowledge base in advance. When registering source code in the knowledge base, it is recommended to convert it into a format that LLM can easily understand using methods such as gpt-repository-loader. Figma design files can be referenced by registering HTML and CSS exported versions to the Knowledge Base.
Click the "Connect" button at the bottom of the screen and enter your knowledge base ID.
Generate AWS Step Functions ASL definitions and preview them in real-time.
MIT License
This software uses Lottie Files.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for bedrock-engineer
Similar Open Source Tools
![bedrock-engineer Screenshot](/screenshots_githubs/daisuke-awaji-bedrock-engineer.jpg)
bedrock-engineer
Bedrock Engineer is an AI assistant for software development tasks powered by Amazon Bedrock. It combines large language models with file system operations and web search functionality to support development processes. The autonomous AI agent provides interactive chat, file system operations, web search, project structure management, code analysis, code generation, data analysis, agent and tool customization, chat history management, and multi-language support. Users can select agents, customize them, select tools, and customize tools. The tool also includes a website generator for React.js, Vue.js, Svelte.js, and Vanilla.js, with support for inline styling, Tailwind.css, and Material UI. Users can connect to design system data sources and generate AWS Step Functions ASL definitions.
![aws-genai-llm-chatbot Screenshot](/screenshots_githubs/aws-samples-aws-genai-llm-chatbot.jpg)
aws-genai-llm-chatbot
This repository provides code to deploy a chatbot powered by Multi-Model and Multi-RAG using AWS CDK on AWS. Users can experiment with various Large Language Models and Multimodal Language Models from different providers. The solution supports Amazon Bedrock, Amazon SageMaker self-hosted models, and third-party providers via API. It also offers additional resources like AWS Generative AI CDK Constructs and Project Lakechain for building generative AI solutions and document processing. The roadmap and authors are listed, along with contributors. The library is licensed under the MIT-0 License with information on changelog, code of conduct, and contributing guidelines. A legal disclaimer advises users to conduct their own assessment before using the content for production purposes.
![freegenius Screenshot](/screenshots_githubs/eliranwong-freegenius.jpg)
freegenius
FreeGenius AI is an ambitious project offering a comprehensive suite of AI solutions that mirror the capabilities of LetMeDoIt AI. It is designed to engage in intuitive conversations, execute codes, provide up-to-date information, and perform various tasks. The tool is free, customizable, and provides access to real-time data and device information. It aims to support offline and online backends, open-source large language models, and optional API keys. Users can use FreeGenius AI for tasks like generating tweets, analyzing audio, searching financial data, checking weather, and creating maps.
![buildel Screenshot](/screenshots_githubs/elpassion-buildel.jpg)
buildel
Buildel is an AI automation platform that empowers users to create versatile workflows without writing code. It supports multiple providers and interfaces, offers pre-built use cases, and allows users to bring their own API keys. Ideal for AI-powered document retrieval, conversational interfaces, and data integration. Users can get started at app.buildel.ai or run Buildel locally with Node.js, Elixir/Erlang, Docker, Git, and JQ installed. Join the community on Discord for support and discussions.
![generative-bi-using-rag Screenshot](/screenshots_githubs/aws-samples-generative-bi-using-rag.jpg)
generative-bi-using-rag
Generative BI using RAG on AWS is a comprehensive framework designed to enable Generative BI capabilities on customized data sources hosted on AWS. It offers features such as Text-to-SQL functionality for querying data sources using natural language, user-friendly interface for managing data sources, performance enhancement through historical question-answer ranking, and entity recognition. It also allows customization of business information, handling complex attribution analysis problems, and provides an intuitive question-answering UI with a conversational approach for complex queries.
![swirl-search Screenshot](/screenshots_githubs/swirlai-swirl-search.jpg)
swirl-search
Swirl is an open-source software that allows users to simultaneously search multiple content sources and receive AI-ranked results. It connects to various data sources, including databases, public data services, and enterprise sources, and utilizes AI and LLMs to generate insights and answers based on the user's data. Swirl is easy to use, requiring only the download of a YML file, starting in Docker, and searching with Swirl. Users can add credentials to preloaded SearchProviders to access more sources. Swirl also offers integration with ChatGPT as a configured AI model. It adapts and distributes user queries to anything with a search API, re-ranking the unified results using Large Language Models without extracting or indexing anything. Swirl includes five Google Programmable Search Engines (PSEs) to get users up and running quickly. Key features of Swirl include Microsoft 365 integration, SearchProvider configurations, query adaptation, synchronous or asynchronous search federation, optional subscribe feature, pipelining of Processor stages, results stored in SQLite3 or PostgreSQL, built-in Query Transformation support, matching on word stems and handling of stopwords, duplicate detection, re-ranking of unified results using Cosine Vector Similarity, result mixers, page through all results requested, sample data sets, optional spell correction, optional search/result expiration service, easily extensible Connector and Mixer objects, and a welcoming community for collaboration and support.
![AI-Playground Screenshot](/screenshots_githubs/intel-AI-Playground.jpg)
AI-Playground
AI Playground is an open-source project and AI PC starter app designed for AI image creation, image stylizing, and chatbot functionalities on a PC powered by an Intel Arc GPU. It leverages libraries from GitHub and Huggingface, providing users with the ability to create AI-generated content and interact with chatbots. The tool requires specific hardware specifications and offers packaged installers for ease of setup. Users can also develop the project environment, link it to the development environment, and utilize alternative models for different AI tasks.
![onyx Screenshot](/screenshots_githubs/onyx-dot-app-onyx.jpg)
onyx
Onyx is an open-source Gen-AI and Enterprise Search tool that serves as an AI Assistant connected to company documents, apps, and people. It provides a chat interface, can be deployed anywhere, and offers features like user authentication, role management, chat persistence, and UI for configuring AI Assistants. Onyx acts as an Enterprise Search tool across various workplace platforms, enabling users to access team-specific knowledge and perform tasks like document search, AI answers for natural language queries, and integration with common workplace tools like Slack, Google Drive, Confluence, etc.
![llm-app Screenshot](/screenshots_githubs/pathwaycom-llm-app.jpg)
llm-app
Pathway's LLM (Large Language Model) Apps provide a platform to quickly deploy AI applications using the latest knowledge from data sources. The Python application examples in this repository are Docker-ready, exposing an HTTP API to the frontend. These apps utilize the Pathway framework for data synchronization, API serving, and low-latency data processing without the need for additional infrastructure dependencies. They connect to document data sources like S3, Google Drive, and Sharepoint, offering features like real-time data syncing, easy alert setup, scalability, monitoring, security, and unification of application logic.
![connery-sdk Screenshot](/screenshots_githubs/connery-io-connery-sdk.jpg)
connery-sdk
Connery SDK is an open-source NPM package that provides an SDK and CLI for developing plugins and actions. The SDK offers a JavaScript API to define plugins and actions, which are then packaged into a plugin server with a standardized REST API. This enables automation in the development process and simplifies handling authorization, input validation, and logging. Users can focus on the logic of their actions while the standardized API allows various clients to interact with actions uniformly. Actions can communicate with external APIs, databases, or services, making it versatile for creating AI plugins and actions.
![twinny Screenshot](/screenshots_githubs/rjmacarthy-twinny.jpg)
twinny
Twinny is a free and open-source AI code completion plugin for Visual Studio Code and compatible editors. It integrates with various tools and frameworks, including Ollama, llama.cpp, oobabooga/text-generation-webui, LM Studio, LiteLLM, and Open WebUI. Twinny offers features such as fill-in-the-middle code completion, chat with AI about your code, customizable API endpoints, and support for single or multiline fill-in-middle completions. It is easy to install via the Visual Studio Code extensions marketplace and provides a range of customization options. Twinny supports both online and offline operation and conforms to the OpenAI API standard.
![hollama Screenshot](/screenshots_githubs/fmaclen-hollama.jpg)
hollama
Hollama is a minimal web-UI tool designed for interacting with Ollama servers. It features large prompt fields, streams completions, ability to copy completions as raw text, Markdown parsing with syntax highlighting, and saves sessions/context in the browser's localStorage. Users can access the latest version of Hollama at https://hollama.fernando.is without sign up, and data is stored locally on the browser. The tool can also be run as a Docker image by executing a specific command. Developers can connect to an Ollama server by updating the ORIGIN settings. Hollama facilitates easy development by providing instructions to set up the environment, install dependencies, and start a development server. Building a production version of the app is straightforward with a single command, and deployment may require installing an adapter for the target environment.
![fast-wiki Screenshot](/screenshots_githubs/AIDotNet-fast-wiki.jpg)
fast-wiki
FastWiki is an enterprise-level artificial intelligence customer service management system. It is a high-performance knowledge base system designed for large-scale information retrieval and intelligent search. Leveraging Microsoft's Semantic Kernel for deep learning and natural language processing, combined with .NET 8 and React framework, it provides an efficient, user-friendly, and scalable intelligent vector search platform. The system aims to offer an intelligent search solution that can understand and process complex queries, assisting users in quickly and accurately obtaining the needed information.
![chainlit Screenshot](/screenshots_githubs/Chainlit-chainlit.jpg)
chainlit
Chainlit is an open-source async Python framework which allows developers to build scalable Conversational AI or agentic applications. It enables users to create ChatGPT-like applications, embedded chatbots, custom frontends, and API endpoints. The framework provides features such as multi-modal chats, chain of thought visualization, data persistence, human feedback, and an in-context prompt playground. Chainlit is compatible with various Python programs and libraries, including LangChain, Llama Index, Autogen, OpenAI Assistant, and Haystack. It offers a range of examples and a cookbook to showcase its capabilities and inspire users. Chainlit welcomes contributions and is licensed under the Apache 2.0 license.
![Slurm-web Screenshot](/screenshots_githubs/rackslab-Slurm-web.jpg)
Slurm-web
Slurm-web is an open source web dashboard designed for Slurm based HPC clusters. It provides a graphical user interface to track jobs, insights, and visualizations for monitoring HPC supercomputers. The tool offers features like interactive charts, job filtering, live status updates, node visualization, RBAC permissions, LDAP authentication, and integration with Prometheus for metrics collection.
![wren-engine Screenshot](/screenshots_githubs/Canner-wren-engine.jpg)
wren-engine
Wren Engine is a semantic engine designed to serve as the backbone of the semantic layer for LLMs. It simplifies the user experience by translating complex data structures into a business-friendly format, enabling end-users to interact with data using familiar terminology. The engine powers the semantic layer with advanced capabilities to define and manage modeling definitions, metadata, schema, data relationships, and logic behind calculations and aggregations through an analytics-as-code design approach. By leveraging Wren Engine, organizations can ensure a developer-friendly semantic layer that reflects nuanced data relationships and dynamics, facilitating more informed decision-making and strategic insights.
For similar tasks
![Azure-Analytics-and-AI-Engagement Screenshot](/screenshots_githubs/microsoft-Azure-Analytics-and-AI-Engagement.jpg)
Azure-Analytics-and-AI-Engagement
The Azure-Analytics-and-AI-Engagement repository provides packaged Industry Scenario DREAM Demos with ARM templates (Containing a demo web application, Power BI reports, Synapse resources, AML Notebooks etc.) that can be deployed in a customerβs subscription using the CAPE tool within a matter of few hours. Partners can also deploy DREAM Demos in their own subscriptions using DPoC.
![sorrentum Screenshot](/screenshots_githubs/sorrentum-sorrentum.jpg)
sorrentum
Sorrentum is an open-source project that aims to combine open-source development, startups, and brilliant students to build machine learning, AI, and Web3 / DeFi protocols geared towards finance and economics. The project provides opportunities for internships, research assistantships, and development grants, as well as the chance to work on cutting-edge problems, learn about startups, write academic papers, and get internships and full-time positions at companies working on Sorrentum applications.
![tidb Screenshot](/screenshots_githubs/pingcap-tidb.jpg)
tidb
TiDB is an open-source distributed SQL database that supports Hybrid Transactional and Analytical Processing (HTAP) workloads. It is MySQL compatible and features horizontal scalability, strong consistency, and high availability.
![zep-python Screenshot](/screenshots_githubs/getzep-zep-python.jpg)
zep-python
Zep is an open-source platform for building and deploying large language model (LLM) applications. It provides a suite of tools and services that make it easy to integrate LLMs into your applications, including chat history memory, embedding, vector search, and data enrichment. Zep is designed to be scalable, reliable, and easy to use, making it a great choice for developers who want to build LLM-powered applications quickly and easily.
![telemetry-airflow Screenshot](/screenshots_githubs/mozilla-telemetry-airflow.jpg)
telemetry-airflow
This repository codifies the Airflow cluster that is deployed at workflow.telemetry.mozilla.org (behind SSO) and commonly referred to as "WTMO" or simply "Airflow". Some links relevant to users and developers of WTMO: * The `dags` directory in this repository contains some custom DAG definitions * Many of the DAGs registered with WTMO don't live in this repository, but are instead generated from ETL task definitions in bigquery-etl * The Data SRE team maintains a WTMO Developer Guide (behind SSO)
![mojo Screenshot](/screenshots_githubs/modularml-mojo.jpg)
mojo
Mojo is a new programming language that bridges the gap between research and production by combining Python syntax and ecosystem with systems programming and metaprogramming features. Mojo is still young, but it is designed to become a superset of Python over time.
![pandas-ai Screenshot](/screenshots_githubs/Sinaptik-AI-pandas-ai.jpg)
pandas-ai
PandasAI is a Python library that makes it easy to ask questions to your data in natural language. It helps you to explore, clean, and analyze your data using generative AI.
![databend Screenshot](/screenshots_githubs/datafuselabs-databend.jpg)
databend
Databend is an open-source cloud data warehouse that serves as a cost-effective alternative to Snowflake. With its focus on fast query execution and data ingestion, it's designed for complex analysis of the world's largest datasets.
For similar jobs
![lollms-webui Screenshot](/screenshots_githubs/ParisNeo-lollms-webui.jpg)
lollms-webui
LoLLMs WebUI (Lord of Large Language Multimodal Systems: One tool to rule them all) is a user-friendly interface to access and utilize various LLM (Large Language Models) and other AI models for a wide range of tasks. With over 500 AI expert conditionings across diverse domains and more than 2500 fine tuned models over multiple domains, LoLLMs WebUI provides an immediate resource for any problem, from car repair to coding assistance, legal matters, medical diagnosis, entertainment, and more. The easy-to-use UI with light and dark mode options, integration with GitHub repository, support for different personalities, and features like thumb up/down rating, copy, edit, and remove messages, local database storage, search, export, and delete multiple discussions, make LoLLMs WebUI a powerful and versatile tool.
![Azure-Analytics-and-AI-Engagement Screenshot](/screenshots_githubs/microsoft-Azure-Analytics-and-AI-Engagement.jpg)
Azure-Analytics-and-AI-Engagement
The Azure-Analytics-and-AI-Engagement repository provides packaged Industry Scenario DREAM Demos with ARM templates (Containing a demo web application, Power BI reports, Synapse resources, AML Notebooks etc.) that can be deployed in a customerβs subscription using the CAPE tool within a matter of few hours. Partners can also deploy DREAM Demos in their own subscriptions using DPoC.
![minio Screenshot](/screenshots_githubs/minio-minio.jpg)
minio
MinIO is a High Performance Object Storage released under GNU Affero General Public License v3.0. It is API compatible with Amazon S3 cloud storage service. Use MinIO to build high performance infrastructure for machine learning, analytics and application data workloads.
![mage-ai Screenshot](/screenshots_githubs/mage-ai-mage-ai.jpg)
mage-ai
Mage is an open-source data pipeline tool for transforming and integrating data. It offers an easy developer experience, engineering best practices built-in, and data as a first-class citizen. Mage makes it easy to build, preview, and launch data pipelines, and provides observability and scaling capabilities. It supports data integrations, streaming pipelines, and dbt integration.
![AiTreasureBox Screenshot](/screenshots_githubs/superiorlu-AiTreasureBox.jpg)
AiTreasureBox
AiTreasureBox is a versatile AI tool that provides a collection of pre-trained models and algorithms for various machine learning tasks. It simplifies the process of implementing AI solutions by offering ready-to-use components that can be easily integrated into projects. With AiTreasureBox, users can quickly prototype and deploy AI applications without the need for extensive knowledge in machine learning or deep learning. The tool covers a wide range of tasks such as image classification, text generation, sentiment analysis, object detection, and more. It is designed to be user-friendly and accessible to both beginners and experienced developers, making AI development more efficient and accessible to a wider audience.
![tidb Screenshot](/screenshots_githubs/pingcap-tidb.jpg)
tidb
TiDB is an open-source distributed SQL database that supports Hybrid Transactional and Analytical Processing (HTAP) workloads. It is MySQL compatible and features horizontal scalability, strong consistency, and high availability.
![airbyte Screenshot](/screenshots_githubs/airbytehq-airbyte.jpg)
airbyte
Airbyte is an open-source data integration platform that makes it easy to move data from any source to any destination. With Airbyte, you can build and manage data pipelines without writing any code. Airbyte provides a library of pre-built connectors that make it easy to connect to popular data sources and destinations. You can also create your own connectors using Airbyte's no-code Connector Builder or low-code CDK. Airbyte is used by data engineers and analysts at companies of all sizes to build and manage their data pipelines.
![labelbox-python Screenshot](/screenshots_githubs/Labelbox-labelbox-python.jpg)
labelbox-python
Labelbox is a data-centric AI platform for enterprises to develop, optimize, and use AI to solve problems and power new products and services. Enterprises use Labelbox to curate data, generate high-quality human feedback data for computer vision and LLMs, evaluate model performance, and automate tasks by combining AI and human-centric workflows. The academic & research community uses Labelbox for cutting-edge AI research.