
higress
🤖 AI Gateway | AI Native API Gateway
Stars: 4128

Higress is an open-source cloud-native API gateway built on the core of Istio and Envoy, based on Alibaba's internal practice of Envoy Gateway. It is designed for AI-native API gateway, serving AI businesses such as Tongyi Qianwen APP, Bailian Big Model API, and Machine Learning PAI platform. Higress provides capabilities to interface with LLM model vendors, AI observability, multi-model load balancing/fallback, AI token flow control, and AI caching. It offers features for AI gateway, Kubernetes Ingress gateway, microservices gateway, and security protection gateway, with advantages in production-level scalability, stream processing, extensibility, and ease of use.
README:
官网 | 文档 | 博客 | 电子书 | 开发指引 | AI插件
Higress 是一款云原生 API 网关,内核基于 Istio 和 Envoy,可以用 Go/Rust/JS 等编写 Wasm 插件,提供了数十个现成的通用插件,以及开箱即用的控制台(demo 点这里)
Higress 在阿里内部为解决 Tengine reload 对长连接业务有损,以及 gRPC/Dubbo 负载均衡能力不足而诞生。
阿里云基于 Higress 构建了云原生 API 网关产品,为大量企业客户提供 99.99% 的网关高可用保障服务能力。
Higress 的 AI 网关能力支持国内外所有主流模型供应商和基于 vllm/ollama 等自建的 DeepSeek 模型;在阿里云内部支撑了通义千问 APP、百炼大模型 API、机器学习 PAI 平台等 AI 业务。同时服务国内头部的 AIGC 企业(如零一万物),以及 AI 产品(如 FastGPT)
Higress 只需 Docker 即可启动,方便个人开发者在本地搭建学习,或者用于搭建简易站点:
# 创建一个工作目录
mkdir higress; cd higress
# 启动 higress,配置文件会写到工作目录下
docker run -d --rm --name higress-ai -v ${PWD}:/data \
-p 8001:8001 -p 8080:8080 -p 8443:8443 \
higress-registry.cn-hangzhou.cr.aliyuncs.com/higress/all-in-one:latest
监听端口说明如下:
- 8001 端口:Higress UI 控制台入口
- 8080 端口:网关 HTTP 协议入口
- 8443 端口:网关 HTTPS 协议入口
Higress 的所有 Docker 镜像都一直使用自己独享的仓库,不受 Docker Hub 境内访问受限的影响
K8s 下使用 Helm 部署等其他安装方式可以参考官网 Quick Start 文档。
如果您是在云上部署,生产环境推荐使用企业版,开发测试可以使用下面一键部署社区版:
-
AI 网关:
Higress 能够用统一的协议对接国内外所有 LLM 模型厂商,同时具备丰富的 AI 可观测、多模型负载均衡/fallback、AI token 流控、AI 缓存等能力:
-
Kubernetes Ingress 网关:
Higress 可以作为 K8s 集群的 Ingress 入口网关, 并且兼容了大量 K8s Nginx Ingress 的注解,可以从 K8s Nginx Ingress 快速平滑迁移到 Higress。
支持 Gateway API 标准,支持用户从 Ingress API 平滑迁移到 Gateway API。
相比 ingress-nginx,资源开销大幅下降,路由变更生效速度有十倍提升:
-
微服务网关:
Higress 可以作为微服务网关, 能够对接多种类型的注册中心发现服务配置路由,例如 Nacos, ZooKeeper, Consul, Eureka 等。
并且深度集成了 Dubbo, Nacos, Sentinel 等微服务技术栈,基于 Envoy C++ 网关内核的出色性能,相比传统 Java 类微服务网关,可以显著降低资源使用率,减少成本。
-
安全防护网关:
Higress 可以作为安全防护网关, 提供 WAF 的能力,并且支持多种认证鉴权策略,例如 key-auth, hmac-auth, jwt-auth, basic-auth, oidc 等。
-
生产等级
脱胎于阿里巴巴2年多生产验证的内部产品,支持每秒请求量达数十万级的大规模场景。
彻底摆脱 Nginx reload 引起的流量抖动,配置变更毫秒级生效且业务无感。对 AI 业务等长连接场景特别友好。
-
流式处理
支持真正的完全流式处理请求/响应 Body,Wasm 插件很方便地自定义处理 SSE (Server-Sent Events)等流式协议的报文。
在 AI 业务等大带宽场景下,可以显著降低内存开销。
-
便于扩展
提供丰富的官方插件库,涵盖 AI、流量管理、安全防护等常用功能,满足90%以上的业务场景需求。
主打 Wasm 插件扩展,通过沙箱隔离确保内存安全,支持多种编程语言,允许插件版本独立升级,实现流量无损热更新网关逻辑。
-
安全易用
基于 Ingress API 和 Gateway API 标准,提供开箱即用的 UI 控制台,WAF 防护插件、IP/Cookie CC 防护插件开箱即用。
支持对接 Let's Encrypt 自动签发和续签免费证书,并且可以脱离 K8s 部署,一行 Docker 命令即可启动,方便个人开发者使用。
-
丰富的可观测
提供开箱即用的可观测,Grafana&Prometheus 可以使用内置的也可对接自建的
-
插件扩展机制
官方提供了多种插件,用户也可以开发自己的插件,构建成 docker/oci 镜像后在控制台配置,可以实时变更插件逻辑,对流量完全无损。
-
多种服务发现
默认提供 K8s Service 服务发现,通过配置可以对接 Nacos/ZooKeeper 等注册中心实现服务发现,也可以基于静态 IP 或者 DNS 来发现
-
域名和证书
可以创建管理 TLS 证书,并配置域名的 HTTP/HTTPS 行为,域名策略里支持对特定域名生效插件
-
丰富的路由能力
通过上面定义的服务发现机制,发现的服务会出现在服务列表中;创建路由时,选择域名,定义路由匹配机制,再选择目标服务进行路由;路由策略里支持对特定路由生效插件
如果没有 Envoy 和 Istio 的开源工作,Higress 就不可能实现,在这里向这两个项目献上最诚挚的敬意。
微信公众号:
- Higress 控制台:https://github.com/higress-group/higress-console
- Higress(独立运行版):https://github.com/higress-group/higress-standalone
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for higress
Similar Open Source Tools

higress
Higress is an open-source cloud-native API gateway built on the core of Istio and Envoy, based on Alibaba's internal practice of Envoy Gateway. It is designed for AI-native API gateway, serving AI businesses such as Tongyi Qianwen APP, Bailian Big Model API, and Machine Learning PAI platform. Higress provides capabilities to interface with LLM model vendors, AI observability, multi-model load balancing/fallback, AI token flow control, and AI caching. It offers features for AI gateway, Kubernetes Ingress gateway, microservices gateway, and security protection gateway, with advantages in production-level scalability, stream processing, extensibility, and ease of use.

aituber-kit
AITuber-Kit is a tool that enables users to interact with AI characters, conduct AITuber live streams, and engage in external integration modes. Users can easily converse with AI characters using various LLM APIs, stream on YouTube with AI character reactions, and send messages to server apps via WebSocket. The tool provides settings for API keys, character configurations, voice synthesis engines, and more. It supports multiple languages and allows customization of VRM models and background images. AITuber-Kit follows the MIT license and offers guidelines for adding new languages to the project.

AIResume
AIResume is an open-source resume creation platform that helps users easily create professional resumes, integrating AI technology to assist users in polishing their resumes. The project allows for template development using Vue 3, Vite, TypeScript, and Ant Design Vue. Users can edit resumes, export them as PDFs, switch between multiple resume templates, and collaborate on template development. AI features include resume refinement, deep optimization based on individual projects or experiences, and simulated interviews for user practice. Additional functionalities include theme color switching, high customization options, dark/light mode switching, real-time preview, drag-and-drop resume scaling, data export/import, data clearing, sample data prefilling, template market showcasing, and more.

Code-Review-GPT-Gitlab
A project that utilizes large models to help with Code Review on Gitlab, aimed at improving development efficiency. The project is customized for Gitlab and is developing a Multi-Agent plugin for collaborative review. It integrates various large models for code security issues and stays updated with the latest Code Review trends. The project architecture is designed to be powerful, flexible, and efficient, with easy integration of different models and high customization for developers.

uDesktopMascot
uDesktopMascot is an open-source project for a desktop mascot application with a theme of 'freedom of creation'. It allows users to load and display VRM or GLB/FBX model files on the desktop, customize GUI colors and background images, and access various features through a menu screen. The application supports Windows 10/11 and macOS platforms.

GoMaxAI-ChatGPT-Midjourney-Pro
GoMaxAI Pro is an AI-powered application for personal, team, and enterprise private operations. It supports various models like ChatGPT, Claude, Gemini, Kimi, Wenxin Yiyuan, Xunfei Xinghuo, Tsinghua Zhipu, Suno-v3.5, and Luma-video. The Pro version offers a new UI interface, member points system, management backend, homepage features, support for various content formats, AI video capabilities, SAAS multi-opening function, bug fixes, and more. It is built using web frontend with Vue3, mobile frontend with Uniapp, management frontend with Vue3, backend with Nodejs, and uses MySQL5.7(+) + Redis for data support. It can be deployed on Linux, Windows, or MacOS, with data storage options including local storage, Aliyun OSS, Tencent Cloud COS, and Chevereto image bed.

douyin-chatgpt-bot
Douyin ChatGPT Bot is an AI-driven system for automatic replies on Douyin, including comment and private message replies. It offers features such as comment filtering, customizable robot responses, and automated account management. The system aims to enhance user engagement and brand image on the Douyin platform, providing a seamless experience for managing interactions with followers and potential customers.

KouriChat
KouriChat is a project that seamlessly integrates virtual and real interactions, providing eternal gentle bonds. It offers features like WeChat integration, immersive role-playing, intelligent conversation segmentation, emotion-based emojis, image generation, image recognition, voice messages, and more. The project is focused on technical research and learning exchanges, with a strong emphasis on ethical and legal guidelines. Users are required to take full responsibility for their actions, especially minors who should use the tool under supervision. The project architecture includes avatar configurations, data storage, handlers, AI service interfaces, a web UI, and utility libraries.

agenta
Agenta is an open-source LLM developer platform for prompt engineering, evaluation, human feedback, and deployment of complex LLM applications. It provides tools for prompt engineering and management, evaluation, human annotation, and deployment, all without imposing any restrictions on your choice of framework, library, or model. Agenta allows developers and product teams to collaborate in building production-grade LLM-powered applications in less time.

chatgpt-plus
ChatGPT-PLUS is an open-source AI assistant solution based on AI large language model API, with a built-in operational management backend for easy deployment. It integrates multiple large language models from platforms like OpenAI, Azure, ChatGLM, Xunfei Xinghuo, and Wenxin Yanyan. Additionally, it includes MidJourney and Stable Diffusion AI drawing features. The system offers a complete open-source solution with ready-to-use frontend and backend applications, providing a seamless typing experience via Websocket. It comes with various pre-trained role applications such as Xiaohongshu writer, English translation master, Socrates, Confucius, Steve Jobs, and weekly report assistant to meet various chat and application needs. Users can enjoy features like Suno Wensheng music, integration with MidJourney/Stable Diffusion AI drawing, personal WeChat QR code for payment, built-in Alipay and WeChat payment functions, support for various membership packages and point card purchases, and plugin API integration for developing powerful plugins using large language model functions.

SwanLab
SwanLab is an open-source, lightweight AI experiment tracking tool that provides a platform for tracking, comparing, and collaborating on experiments, aiming to accelerate the research and development efficiency of AI teams by 100 times. It offers a friendly API and a beautiful interface, combining hyperparameter tracking, metric recording, online collaboration, experiment link sharing, real-time message notifications, and more. With SwanLab, researchers can document their training experiences, seamlessly communicate and collaborate with collaborators, and machine learning engineers can develop models for production faster.

KubeDoor
KubeDoor is a microservice resource management platform developed using Python and Vue, based on K8S admission control mechanism. It supports unified remote storage, monitoring, alerting, notification, and display for multiple K8S clusters. The platform focuses on resource analysis and control during daily peak hours of microservices, ensuring consistency between resource request rate and actual usage rate.

codemod
Codemod platform is a tool that helps developers create, distribute, and run codemods in codebases of any size. The AI-powered, community-led codemods enable automation of framework upgrades, large refactoring, and boilerplate programming with speed and developer experience. It aims to make dream migrations a reality for developers by providing a platform for seamless codemod operations.

anylabeling
AnyLabeling is a tool for effortless data labeling with AI support from YOLO and Segment Anything. It combines features from LabelImg and Labelme with an improved UI and auto-labeling capabilities. Users can annotate images with polygons, rectangles, circles, lines, and points, as well as perform auto-labeling using YOLOv5 and Segment Anything. The tool also supports text detection, recognition, and Key Information Extraction (KIE) labeling, with multiple language options available such as English, Vietnamese, and Chinese.

llms-txt-hub
The llms.txt hub is a centralized repository for llms.txt implementations and resources, facilitating interactions between LLM-powered tools and services with documentation and codebases. It standardizes documentation access, enhances AI model interpretation, improves AI response accuracy, and sets boundaries for AI content interaction across various projects and platforms.

easyAi
EasyAi is a lightweight, beginner-friendly Java artificial intelligence algorithm framework. It can be seamlessly integrated into Java projects with Maven, requiring no additional environment configuration or dependencies. The framework provides pre-packaged modules for image object detection and AI customer service, as well as various low-level algorithm tools for deep learning, machine learning, reinforcement learning, heuristic learning, and matrix operations. Developers can easily develop custom micro-models tailored to their business needs.
For similar tasks

higress
Higress is an open-source cloud-native API gateway built on the core of Istio and Envoy, based on Alibaba's internal practice of Envoy Gateway. It is designed for AI-native API gateway, serving AI businesses such as Tongyi Qianwen APP, Bailian Big Model API, and Machine Learning PAI platform. Higress provides capabilities to interface with LLM model vendors, AI observability, multi-model load balancing/fallback, AI token flow control, and AI caching. It offers features for AI gateway, Kubernetes Ingress gateway, microservices gateway, and security protection gateway, with advantages in production-level scalability, stream processing, extensibility, and ease of use.

APIPark
APIPark is an open-source AI Gateway and Developer Portal that enables users to easily manage, integrate, and deploy AI and API services. It provides robust API management features, including creation, monitoring, and access control, to help developers efficiently and securely develop and manage their APIs. The platform aims to solve challenges such as connecting to powerful AI models, managing complex AI & API call relationships, overseeing API creation and security, simplifying fault detection and troubleshooting, and enhancing the visibility and valuation of data assets.
For similar jobs

llmops-promptflow-template
LLMOps with Prompt flow is a template and guidance for building LLM-infused apps using Prompt flow. It provides centralized code hosting, lifecycle management, variant and hyperparameter experimentation, A/B deployment, many-to-many dataset/flow relationships, multiple deployment targets, comprehensive reporting, BYOF capabilities, configuration-based development, local prompt experimentation and evaluation, endpoint testing, and optional Human-in-loop validation. The tool is customizable to suit various application needs.

azure-search-vector-samples
This repository provides code samples in Python, C#, REST, and JavaScript for vector support in Azure AI Search. It includes demos for various languages showcasing vectorization of data, creating indexes, and querying vector data. Additionally, it offers tools like Azure AI Search Lab for experimenting with AI-enabled search scenarios in Azure and templates for deploying custom chat-with-your-data solutions. The repository also features documentation on vector search, hybrid search, creating and querying vector indexes, and REST API references for Azure AI Search and Azure OpenAI Service.

geti-sdk
The Intel® Geti™ SDK is a python package that enables teams to rapidly develop AI models by easing the complexities of model development and enhancing collaboration between teams. It provides tools to interact with an Intel® Geti™ server via the REST API, allowing for project creation, downloading, uploading, deploying for local inference with OpenVINO, setting project and model configuration, launching and monitoring training jobs, and media upload and prediction. The SDK also includes tutorial-style Jupyter notebooks demonstrating its usage.

booster
Booster is a powerful inference accelerator designed for scaling large language models within production environments or for experimental purposes. It is built with performance and scaling in mind, supporting various CPUs and GPUs, including Nvidia CUDA, Apple Metal, and OpenCL cards. The tool can split large models across multiple GPUs, offering fast inference on machines with beefy GPUs. It supports both regular FP16/FP32 models and quantised versions, along with popular LLM architectures. Additionally, Booster features proprietary Janus Sampling for code generation and non-English languages.

xFasterTransformer
xFasterTransformer is an optimized solution for Large Language Models (LLMs) on the X86 platform, providing high performance and scalability for inference on mainstream LLM models. It offers C++ and Python APIs for easy integration, along with example codes and benchmark scripts. Users can prepare models in a different format, convert them, and use the APIs for tasks like encoding input prompts, generating token ids, and serving inference requests. The tool supports various data types and models, and can run in single or multi-rank modes using MPI. A web demo based on Gradio is available for popular LLM models like ChatGLM and Llama2. Benchmark scripts help evaluate model inference performance quickly, and MLServer enables serving with REST and gRPC interfaces.

amazon-transcribe-live-call-analytics
The Amazon Transcribe Live Call Analytics (LCA) with Agent Assist Sample Solution is designed to help contact centers assess and optimize caller experiences in real time. It leverages Amazon machine learning services like Amazon Transcribe, Amazon Comprehend, and Amazon SageMaker to transcribe and extract insights from contact center audio. The solution provides real-time supervisor and agent assist features, integrates with existing contact centers, and offers a scalable, cost-effective approach to improve customer interactions. The end-to-end architecture includes features like live call transcription, call summarization, AI-powered agent assistance, and real-time analytics. The solution is event-driven, ensuring low latency and seamless processing flow from ingested speech to live webpage updates.

ai-lab-recipes
This repository contains recipes for building and running containerized AI and LLM applications with Podman. It provides model servers that serve machine-learning models via an API, allowing developers to quickly prototype new AI applications locally. The recipes include components like model servers and AI applications for tasks such as chat, summarization, object detection, etc. Images for sample applications and models are available in `quay.io`, and bootable containers for AI training on Linux OS are enabled.

XLearning
XLearning is a scheduling platform for big data and artificial intelligence, supporting various machine learning and deep learning frameworks. It runs on Hadoop Yarn and integrates frameworks like TensorFlow, MXNet, Caffe, Theano, PyTorch, Keras, XGBoost. XLearning offers scalability, compatibility, multiple deep learning framework support, unified data management based on HDFS, visualization display, and compatibility with code at native frameworks. It provides functions for data input/output strategies, container management, TensorBoard service, and resource usage metrics display. XLearning requires JDK >= 1.7 and Maven >= 3.3 for compilation, and deployment on CentOS 7.2 with Java >= 1.7 and Hadoop 2.6, 2.7, 2.8.