pythagora
Generate automated tests for your Node.js app via LLMs without developers having to write a single line of code.
Stars: 1659
Pythagora is an automated testing tool designed to generate unit tests using GPT-4. By running a single command, users can create tests for specific functions in their codebase. The tool leverages AST parsing to identify related functions and sends them to the Pythagora server for test generation. Pythagora primarily focuses on JavaScript code and supports Jest testing framework. Users can expand existing tests, increase code coverage, and find bugs efficiently. It is recommended to review the generated tests before committing them to the repository. Pythagora does not store user code on its servers but sends it to GPT and OpenAI for test generation.
README:
This repo is deprecated - we're working on GPT Pilot
The following details are for generating unit tests. To view the docs on how to generate integration tests, click here.
If you want to try out Pythagora using Visual Studio Code extension you can download it here.
To install Pythagora run:
npm i pythagora --save-dev
Then, add your API key and you're ready to get tests generated. After that, just run the following command from the root directory of your repo:
npx pythagora --unit-tests --func <FUNCTION_NAME>
Where <FUNCTION_NAME>
is the name of the function you want to generate unit tests for. Just make sure that your function is exported from a file. You can see other options like generating tests for multiple files or folders below in the Options section.
If you wish to expand your current test suite with more tests to get better code coverage you can run:
npx pythagora --expand-unit-tests --path <PATH_TO_YOUR_TEST_SUITE>
for more details on expanding existing tests see below in the Expanding existing tests section.
NOTE: on Windows make sure to run all commands using Git Bash
and not Power Shell
or anything similiar
Here are some demo videos that can help you get started.
Pythagora Unit Tests Demo (2 min)
Here are examples of open sourced repositories that we forked and created tests with Pythagora so you can easily see it in action.
-
- π 1604 tests generated
- π 11 bugs found (1 edge case and 10 bugs)
- β³οΈ 4 hour run time
-
- π 98 tests generated
- π 2 bugs found
- β³οΈ 30 minutes run time
When Pythagora generates unit tests, it uses the following approach:
- Find the function you want to test
- Find all the functions that are called from within that function
- This is done with AST (Abstract Syntax Tree) parsing
- Send the function you want to test and all the related functions to the Pythagora server which then generates the unit tests with GPT-4
- the Pythagora server is open sourced as well here
- You can find the prompts in this folder on the Pythagora server
If you already have generated tests for your codebase but you just want to increase your code coverage or cover more edge cases, simply run:
npx pythagora --expand-unit-tests --path <PATH_TO_YOUR_TEST_SUITE>
When running command PATH_TO_YOUR_TEST_SUITE
can be path to a single test file or to a folder and all test files inside of that folder will be processed and expanded.
That's all, enjoy your new code coverage!
-
To generate unit tests for one single function, run:
npx pythagora --unit-tests --func <FUNCTION_NAME>
-
To generate unit tests for one single function in a specific file, run:
npx pythagora --unit-tests --func <FUNCTION_NAME> --path ./path/to/file.js
-
To generate unit tests for all functions in a file, run:
npx pythagora --unit-tests --path ./path/to/file.js
-
To generate unit tests for all functions in all files in a folder, run:
npx pythagora --unit-tests --path ./path/to/folder/
Pythagora uses GPT-4 to generate tests so you either need to have OpenAI API Key or Pythagora API Key. You can get your Pythagora API Key here or OpenAI API Key here. Once you have it, add it to Pythagora with:
npx pythagora --config --pythagora-api-key <API_KEY>
or
npx pythagora --config --openai-api-key <API_KEY>
To run the generated tests, you can simply run
npx jest ./pythagora_tests/
or to run tests from a specific file or a folder, run npx jest <PATH_TO_FILE_OR_FOLDER>
. Currently, Pythagora supports only generating Jest tests but if you would like it to generate tests in other frameworks, let us know at [email protected].
-
The best unit tests that Pythagora generates are the ones that are standalone functions (eg. helpers). Basically, the parts of the code that actually can be unit tested. For example, take a look at this Pythagora file - it contains helper functions that are a perfect candidate for unit tests. When we ran
npx pythagora --unit-tests --path ./src/utils/common.js
- it generated 145 tests from which only 17 failed. What is amazing is that only 6 tests failed because they were incorrectly written and the other 11 tests caught bugs in the code itself. You can view these tests here. -
We don't store any of your code on our servers. However, the code is being sent to GPT and hence OpenAI. Here is their privacy policy.
-
a function you want to generate tests for needs to be exported from the file. For example, if you have a file like this:
function mongoObjToJson(originalObj) { ... } module.exports = { mongoObjToJson };
Then, to generate unit tests for the
mongoObjToJson
function, you can run:npx pythagora --unit-tests --func mongoObjToJson
-
How accurate are these tests?
- The best unit tests that Pythagora generates are the ones that are standalone functions. Basically, the parts of the code that actually can be unit tested. For example, take a look at this Pythagora file - it contains helper functions that are a perfect candidate for unit tests. When we ran
npx pythagora --unit-tests --path ./src/utils/common.js
- it generated 145 tests from which only 17 failed. What is amazing is that only 6 tests failed because they were incorrectly written and the other 11 tests caught bugs in the code itself. You can view these tests here. - Here are a couple of observations we've made while testing Pythagora:
- It does a great job at testing edge cases. For many repos we created tests for, the tests found bugs right away by testing edge cases.
- It works best for testing standalone helper functions. For example, we tried generating tests for the Lodash repo and it create 1000 tests from which only 40 needed additional review. For other, non standalone functions, we're planning to combine recordings from integration tests to generate proper mocks so that should expand Pythagora's test palette.
- It's definitely not perfect but the tests it created I wanted to keep and commit them. So, I encourage you to try it out and see how it works for you. If you do that, please let us know via email or Discord. We're super excited to hear how it went for you.
- The best unit tests that Pythagora generates are the ones that are standalone functions. Basically, the parts of the code that actually can be unit tested. For example, take a look at this Pythagora file - it contains helper functions that are a perfect candidate for unit tests. When we ran
-
Should I review generated tests?
- Absolutely. As mentioned above, some tests might be incorrectly written so it's best for you to review all tests before committing them. Nevertheless, I think this will save you a lot of time and will help you think about your code in a different way.
- Absolutely. As mentioned above, some tests might be incorrectly written so it's best for you to review all tests before committing them. Nevertheless, I think this will save you a lot of time and will help you think about your code in a different way.
-
Tests help me think about my code - I don't want to generate them automatically
- That's the best thing about Pythagora - it actually does help you think about the code. Just, you don't need to spend time writing tests. This happened to us, who created Pythagora - we coded it as fast as possible but when we added unit test generation, we realized that it cannot create tests for some functions. So, we refactored the code and made it more modular so that unit tests can be generated for it.
- That's the best thing about Pythagora - it actually does help you think about the code. Just, you don't need to spend time writing tests. This happened to us, who created Pythagora - we coded it as fast as possible but when we added unit test generation, we realized that it cannot create tests for some functions. So, we refactored the code and made it more modular so that unit tests can be generated for it.
-
Is Pythagora limited to a specific programming language or framework?
- Pythagora primarily generates unit tests for JavaScript code. However, it's designed to work with code written in JavaScript, TypeScript, and similar languages. If you'd like to see support for other languages or frameworks, please let us know at [email protected].
- Pythagora primarily generates unit tests for JavaScript code. However, it's designed to work with code written in JavaScript, TypeScript, and similar languages. If you'd like to see support for other languages or frameworks, please let us know at [email protected].
-
Can Pythagora generate integration tests as well?
- Pythagora is currently focused on generating unit tests. For generating integration tests, you might need to combine the recordings from integration tests to generate proper mocks. We are actively exploring options to expand its capabilities in the future.
- Pythagora is currently focused on generating unit tests. For generating integration tests, you might need to combine the recordings from integration tests to generate proper mocks. We are actively exploring options to expand its capabilities in the future.
-
Is Pythagora compatible with all JavaScript testing frameworks?
- Currently, Pythagora generates tests using the Jest testing framework. While we are open to expanding compatibility to other testing frameworks, Jest is the primary framework supported at the moment. If you have a specific framework in mind, feel free to share your suggestions with us.
- Currently, Pythagora generates tests using the Jest testing framework. While we are open to expanding compatibility to other testing frameworks, Jest is the primary framework supported at the moment. If you have a specific framework in mind, feel free to share your suggestions with us.
-
How does Pythagora handle sensitive or proprietary code?
- Pythagora doesn't store your code on its servers, but it sends code to GPT and OpenAI for test generation. It's essential to review the generated tests, especially if your code contains sensitive or proprietary information, before committing them to your repository. Be cautious when using Pythagora with sensitive code.
- Pythagora doesn't store your code on its servers, but it sends code to GPT and OpenAI for test generation. It's essential to review the generated tests, especially if your code contains sensitive or proprietary information, before committing them to your repository. Be cautious when using Pythagora with sensitive code.
-
Is Pythagora suitable for all types of projects?
- Pythagora works best for projects with well-structured code and standalone functions (such as helper functions). It excels at generating tests for these types of code. For more complex or non-standalone functions, manual review and modifications may be necessary.
This is an alpha version of Pythagora. To get an update about the beta release or to give a suggestion on tech (framework / database) you want Pythagora to support you can π add your email / comment here π .
π¬ Join the discussion on our Discord server.
π¨ Get updates on new features and beta release by adding your email here.
π As an open source tool, it would mean the world to us if you starred the Pythagora repo π
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for pythagora
Similar Open Source Tools
pythagora
Pythagora is an automated testing tool designed to generate unit tests using GPT-4. By running a single command, users can create tests for specific functions in their codebase. The tool leverages AST parsing to identify related functions and sends them to the Pythagora server for test generation. Pythagora primarily focuses on JavaScript code and supports Jest testing framework. Users can expand existing tests, increase code coverage, and find bugs efficiently. It is recommended to review the generated tests before committing them to the repository. Pythagora does not store user code on its servers but sends it to GPT and OpenAI for test generation.
evals
Evals provide a framework for evaluating large language models (LLMs) or systems built using LLMs. We offer an existing registry of evals to test different dimensions of OpenAI models and the ability to write your own custom evals for use cases you care about. You can also use your data to build private evals which represent the common LLMs patterns in your workflow without exposing any of that data publicly.
modelbench
ModelBench is a tool for running safety benchmarks against AI models and generating detailed reports. It is part of the MLCommons project and is designed as a proof of concept to aggregate measures, relate them to specific harms, create benchmarks, and produce reports. The tool requires LlamaGuard for evaluating responses and a TogetherAI account for running benchmarks. Users can install ModelBench from GitHub or PyPI, run tests using Poetry, and create benchmarks by providing necessary API keys. The tool generates static HTML pages displaying benchmark scores and allows users to dump raw scores and manage cache for faster runs. ModelBench is aimed at enabling users to test their own models and create tests and benchmarks.
tracking-aircraft
This repository provides a demo that tracks aircraft using Redis and Node.js by receiving aircraft transponder broadcasts through a software-defined radio (SDR) and storing them in Redis. The demo includes instructions for setting up the hardware and software components required for tracking aircraft. It consists of four main components: Radio Ingestor, Flight Server, Flight UI, and Redis. The Radio Ingestor captures transponder broadcasts and writes them to a Redis event stream, while the Flight Server consumes the event stream, enriches the data, and provides APIs to query aircraft status. The Flight UI presents flight data to users in map and detail views. Users can run the demo by setting up the hardware, installing SDR software, and running the components using Docker or Node.js.
discourse-chatbot
The discourse-chatbot is an original AI chatbot for Discourse forums that allows users to converse with the bot in posts or chat channels. Users can customize the character of the bot, enable RAG mode for expert answers, search Wikipedia, news, and Google, provide market data, perform accurate math calculations, and experiment with vision support. The bot uses cutting-edge Open AI API and supports Azure and proxy server connections. It includes a quota system for access management and can be used in RAG mode or basic bot mode. The setup involves creating embeddings to make the bot aware of forum content and setting up bot access permissions based on trust levels. Users must obtain an API token from Open AI and configure group quotas to interact with the bot. The plugin is extensible to support other cloud bots and content search beyond the provided set.
digma
Digma is a Continuous Feedback platform that provides code-level insights related to performance, errors, and usage during development. It empowers developers to own their code all the way to production, improving code quality and preventing critical issues. Digma integrates with OpenTelemetry traces and metrics to generate insights in the IDE, helping developers analyze code scalability, bottlenecks, errors, and usage patterns.
wingman-ai
Wingman AI allows you to use your voice to talk to various AI providers and LLMs, process your conversations, and ultimately trigger actions such as pressing buttons or reading answers. Our _Wingmen_ are like characters and your interface to this world, and you can easily control their behavior and characteristics, even if you're not a developer. AI is complex and it scares people. It's also **not just ChatGPT**. We want to make it as easy as possible for you to get started. That's what _Wingman AI_ is all about. It's a **framework** that allows you to build your own Wingmen and use them in your games and programs. The idea is simple, but the possibilities are endless. For example, you could: * **Role play** with an AI while playing for more immersion. Have air traffic control (ATC) in _Star Citizen_ or _Flight Simulator_. Talk to Shadowheart in Baldur's Gate 3 and have her respond in her own (cloned) voice. * Get live data such as trade information, build guides, or wiki content and have it read to you in-game by a _character_ and voice you control. * Execute keystrokes in games/applications and create complex macros. Trigger them in natural conversations with **no need for exact phrases.** The AI understands the context of your dialog and is quite _smart_ in recognizing your intent. Say _"It's raining! I can't see a thing!"_ and have it trigger a command you simply named _WipeVisors_. * Automate tasks on your computer * improve accessibility * ... and much more
PyAirbyte
PyAirbyte brings the power of Airbyte to every Python developer by providing a set of utilities to use Airbyte connectors in Python. It enables users to easily manage secrets, work with various connectors like GitHub, Shopify, and Postgres, and contribute to the project. PyAirbyte is not a replacement for Airbyte but complements it, supporting data orchestration frameworks like Airflow and Snowpark. Users can develop ETL pipelines and import connectors from local directories. The tool simplifies data integration tasks for Python developers.
browser-copilot
Browser Copilot is a browser extension that enables users to utilize AI assistants for various web application tasks. It provides a versatile UI and framework to implement copilots that can automate tasks, extract information, interact with web applications, and utilize service APIs. Users can easily install copilots, start chats, save prompts, and toggle the copilot on or off. The project also includes a sample copilot implementation for testing purposes and encourages community contributions to expand the catalog of copilots.
azure-search-openai-demo
This sample demonstrates a few approaches for creating ChatGPT-like experiences over your own data using the Retrieval Augmented Generation pattern. It uses Azure OpenAI Service to access a GPT model (gpt-35-turbo), and Azure AI Search for data indexing and retrieval. The repo includes sample data so it's ready to try end to end. In this sample application we use a fictitious company called Contoso Electronics, and the experience allows its employees to ask questions about the benefits, internal policies, as well as job descriptions and roles.
gpdb
Greenplum Database (GPDB) is an advanced, fully featured, open source data warehouse, based on PostgreSQL. It provides powerful and rapid analytics on petabyte scale data volumes. Uniquely geared toward big data analytics, Greenplum Database is powered by the worldβs most advanced cost-based query optimizer delivering high analytical query performance on large data volumes.
obsidian-Smart2Brain
Your Smart Second Brain is a free and open-source Obsidian plugin that serves as your personal assistant, powered by large language models like ChatGPT or Llama2. It can directly access and process your notes, eliminating the need for manual prompt editing, and it can operate completely offline, ensuring your data remains private and secure.
local-chat
LocalChat is a simple, easy-to-set-up, and open-source local AI chat tool that allows users to interact with generative language models on their own computers without transmitting data to a cloud server. It provides a chat-like interface for users to experience ChatGPT-like behavior locally, ensuring GDPR compliance and data privacy. Users can download LocalChat for macOS, Windows, or Linux to chat with open-weight generative language models.
ai-toolkit
The AI Toolkit by Ostris is a collection of tools for machine learning, specifically designed for image generation, LoRA (latent representations of attributes) extraction and manipulation, and model training. It provides a user-friendly interface and extensive documentation to make it accessible to both developers and non-developers. The toolkit is actively under development, with new features and improvements being added regularly. Some of the key features of the AI Toolkit include: - Batch Image Generation: Allows users to generate a batch of images based on prompts or text files, using a configuration file to specify the desired settings. - LoRA (lierla), LoCON (LyCORIS) Extractor: Facilitates the extraction of LoRA and LoCON representations from pre-trained models, enabling users to modify and manipulate these representations for various purposes. - LoRA Rescale: Provides a tool to rescale LoRA weights, allowing users to adjust the influence of specific attributes in the generated images. - LoRA Slider Trainer: Enables the training of LoRA sliders, which can be used to control and adjust specific attributes in the generated images, offering a powerful tool for fine-tuning and customization. - Extensions: Supports the creation and sharing of custom extensions, allowing users to extend the functionality of the toolkit with their own tools and scripts. - VAE (Variational Auto Encoder) Trainer: Facilitates the training of VAEs for image generation, providing users with a tool to explore and improve the quality of generated images. The AI Toolkit is a valuable resource for anyone interested in exploring and utilizing machine learning for image generation and manipulation. Its user-friendly interface, extensive documentation, and active development make it an accessible and powerful tool for both beginners and experienced users.
AgentStack
AgentStack is a command-line tool that helps users create AI agent projects quickly and efficiently. It offers CLI utilities for code generation and simplifies the process of building agents and tasks. The tool is designed to work on macOS, Windows, and Linux, providing a seamless experience for developers. AgentStack aims to streamline the development process by offering pre-built templates, easy access to tools, and a curated experience on top of popular agent frameworks and LLM providers. It is not a low-code solution but rather a head-start for starting agent projects from scratch.
llm_engineering
LLM Engineering is an 8-week course designed to help learners master AI and LLMs through a series of projects that gradually increase in complexity. The course covers setting up the environment, working with APIs, using Google Colab for GPU processing, and building an autonomous Agentic AI solution. Learners are encouraged to actively participate, run code cells, tweak code, and share their progress with the community. The emphasis is on practical, educational projects that teach valuable business skills.
For similar tasks
pythagora
Pythagora is an automated testing tool designed to generate unit tests using GPT-4. By running a single command, users can create tests for specific functions in their codebase. The tool leverages AST parsing to identify related functions and sends them to the Pythagora server for test generation. Pythagora primarily focuses on JavaScript code and supports Jest testing framework. Users can expand existing tests, increase code coverage, and find bugs efficiently. It is recommended to review the generated tests before committing them to the repository. Pythagora does not store user code on its servers but sends it to GPT and OpenAI for test generation.
ChatDBG
ChatDBG is an AI-based debugging assistant for C/C++/Python/Rust code that integrates large language models into a standard debugger (`pdb`, `lldb`, `gdb`, and `windbg`) to help debug your code. With ChatDBG, you can engage in a dialog with your debugger, asking open-ended questions about your program, like `why is x null?`. ChatDBG will _take the wheel_ and steer the debugger to answer your queries. ChatDBG can provide error diagnoses and suggest fixes. As far as we are aware, ChatDBG is the _first_ debugger to automatically perform root cause analysis and to provide suggested fixes.
code2prompt
code2prompt is a command-line tool that converts your codebase into a single LLM prompt with a source tree, prompt templating, and token counting. It automates generating LLM prompts from codebases of any size, customizing prompt generation with Handlebars templates, respecting .gitignore, filtering and excluding files using glob patterns, displaying token count, including Git diff output, copying prompt to clipboard, saving prompt to an output file, excluding files and folders, adding line numbers to source code blocks, and more. It helps streamline the process of creating LLM prompts for code analysis, generation, and other tasks.
refact-vscode
Refact.ai is an open-source AI coding assistant that boosts developer's productivity. It supports 25+ programming languages and offers features like code completion, AI Toolbox for code explanation and refactoring, integrated in-IDE chat, and self-hosting or cloud version. The Enterprise plan provides enhanced customization, security, fine-tuning, user statistics, efficient inference, priority support, and access to 20+ LLMs for up to 50 engineers per GPU.
fittencode.nvim
Fitten Code AI Programming Assistant for Neovim provides fast completion using AI, asynchronous I/O, and support for various actions like document code, edit code, explain code, find bugs, generate unit test, implement features, optimize code, refactor code, start chat, and more. It offers features like accepting suggestions with Tab, accepting line with Ctrl + Down, accepting word with Ctrl + Right, undoing accepted text, automatic scrolling, and multiple HTTP/REST backends. It can run as a coc.nvim source or nvim-cmp source.
GhidrOllama
GhidrOllama is a script that interacts with Ollama's API to perform various reverse engineering tasks within Ghidra. It supports both local and remote instances of Ollama, providing functionalities like explaining functions, suggesting names, rewriting functions, finding bugs, and automating analysis of specific functions in binaries. Users can ask questions about functions, find vulnerabilities, and receive explanations of assembly instructions. The script bridges the gap between Ghidra and Ollama models, enhancing reverse engineering capabilities.
DevoxxGenieIDEAPlugin
Devoxx Genie is a Java-based IntelliJ IDEA plugin that integrates with local and cloud-based LLM providers to aid in reviewing, testing, and explaining project code. It supports features like code highlighting, chat conversations, and adding files/code snippets to context. Users can modify REST endpoints and LLM parameters in settings, including support for cloud-based LLMs. The plugin requires IntelliJ version 2023.3.4 and JDK 17. Building and publishing the plugin is done using Gradle tasks. Users can select an LLM provider, choose code, and use commands like review, explain, or generate unit tests for code analysis.
cover-agent
CodiumAI Cover Agent is a tool designed to help increase code coverage by automatically generating qualified tests to enhance existing test suites. It utilizes Generative AI to streamline development workflows and is part of a suite of utilities aimed at automating the creation of unit tests for software projects. The system includes components like Test Runner, Coverage Parser, Prompt Builder, and AI Caller to simplify and expedite the testing process, ensuring high-quality software development. Cover Agent can be run via a terminal and is planned to be integrated into popular CI platforms. The tool outputs debug files locally, such as generated_prompt.md, run.log, and test_results.html, providing detailed information on generated tests and their status. It supports multiple LLMs and allows users to specify the model to use for test generation.
For similar jobs
resonance
Resonance is a framework designed to facilitate interoperability and messaging between services in your infrastructure and beyond. It provides AI capabilities and takes full advantage of asynchronous PHP, built on top of Swoole. With Resonance, you can: * Chat with Open-Source LLMs: Create prompt controllers to directly answer user's prompts. LLM takes care of determining user's intention, so you can focus on taking appropriate action. * Asynchronous Where it Matters: Respond asynchronously to incoming RPC or WebSocket messages (or both combined) with little overhead. You can set up all the asynchronous features using attributes. No elaborate configuration is needed. * Simple Things Remain Simple: Writing HTTP controllers is similar to how it's done in the synchronous code. Controllers have new exciting features that take advantage of the asynchronous environment. * Consistency is Key: You can keep the same approach to writing software no matter the size of your project. There are no growing central configuration files or service dependencies registries. Every relation between code modules is local to those modules. * Promises in PHP: Resonance provides a partial implementation of Promise/A+ spec to handle various asynchronous tasks. * GraphQL Out of the Box: You can build elaborate GraphQL schemas by using just the PHP attributes. Resonance takes care of reusing SQL queries and optimizing the resources' usage. All fields can be resolved asynchronously.
aiogram_bot_template
Aiogram bot template is a boilerplate for creating Telegram bots using Aiogram framework. It provides a solid foundation for building robust and scalable bots with a focus on code organization, database integration, and localization.
pluto
Pluto is a development tool dedicated to helping developers **build cloud and AI applications more conveniently** , resolving issues such as the challenging deployment of AI applications and open-source models. Developers are able to write applications in familiar programming languages like **Python and TypeScript** , **directly defining and utilizing the cloud resources necessary for the application within their code base** , such as AWS SageMaker, DynamoDB, and more. Pluto automatically deduces the infrastructure resource needs of the app through **static program analysis** and proceeds to create these resources on the specified cloud platform, **simplifying the resources creation and application deployment process**.
pinecone-ts-client
The official Node.js client for Pinecone, written in TypeScript. This client library provides a high-level interface for interacting with the Pinecone vector database service. With this client, you can create and manage indexes, upsert and query vector data, and perform other operations related to vector search and retrieval. The client is designed to be easy to use and provides a consistent and idiomatic experience for Node.js developers. It supports all the features and functionality of the Pinecone API, making it a comprehensive solution for building vector-powered applications in Node.js.
aiohttp-pydantic
Aiohttp pydantic is an aiohttp view to easily parse and validate requests. You define using function annotations what your methods for handling HTTP verbs expect, and Aiohttp pydantic parses the HTTP request for you, validates the data, and injects the parameters you want. It provides features like query string, request body, URL path, and HTTP headers validation, as well as Open API Specification generation.
gcloud-aio
This repository contains shared codebase for two projects: gcloud-aio and gcloud-rest. gcloud-aio is built for Python 3's asyncio, while gcloud-rest is a threadsafe requests-based implementation. It provides clients for Google Cloud services like Auth, BigQuery, Datastore, KMS, PubSub, Storage, and Task Queue. Users can install the library using pip and refer to the documentation for usage details. Developers can contribute to the project by following the contribution guide.
aioconsole
aioconsole is a Python package that provides asynchronous console and interfaces for asyncio. It offers asynchronous equivalents to input, print, exec, and code.interact, an interactive loop running the asynchronous Python console, customization and running of command line interfaces using argparse, stream support to serve interfaces instead of using standard streams, and the apython script to access asyncio code at runtime without modifying the sources. The package requires Python version 3.8 or higher and can be installed from PyPI or GitHub. It allows users to run Python files or modules with a modified asyncio policy, replacing the default event loop with an interactive loop. aioconsole is useful for scenarios where users need to interact with asyncio code in a console environment.
aiosqlite
aiosqlite is a Python library that provides a friendly, async interface to SQLite databases. It replicates the standard sqlite3 module but with async versions of all the standard connection and cursor methods, along with context managers for automatically closing connections and cursors. It allows interaction with SQLite databases on the main AsyncIO event loop without blocking execution of other coroutines while waiting for queries or data fetches. The library also replicates most of the advanced features of sqlite3, such as row factories and total changes tracking.