![eulers-shield](/statics/github-mark.png)
eulers-shield
A decentralized, AI-powered financial system for stabilizing the value of Pi Coin at $314.159. Combining blockchain, machine learning, and cybersecurity, Euler's Shield ensures the security, scalability, and decentralization of the Pi Coin ecosystem.
Stars: 71
![screenshot](/screenshots_githubs/KOSASIH-eulers-shield.jpg)
Euler's Shield is a decentralized, AI-powered financial system designed to stabilize the value of Pi Coin at $314.159. It combines blockchain, machine learning, and cybersecurity to ensure the security, scalability, and decentralization of the Pi Coin ecosystem.
README:
Euler Shield by KOSASIH is licensed under Creative Commons Attribution 4.0 International
A decentralized, AI-powered financial system for stabilizing the value of Pi Coin at $314.159 ( Three hundred fourteen thousand one hundred fifty-nine dollars ). Combining blockchain, machine learning, and cybersecurity, Euler's Shield ensures the security, scalability, and decentralization of the Pi Coin ecosystem.
================
Euler's Shield is a cutting-edge, decentralized financial system designed to stabilize the value of Pi Coin at $314.159. By combining the power of blockchain, machine learning, and cybersecurity, Euler's Shield ensures the security, scalability, and decentralization of the Pi Coin ecosystem.
Utilizing advanced machine learning algorithms, Euler's Shield continuously monitors and adjusts to market fluctuations, ensuring the value of Pi Coin remains stable at $314.159 ( Three hundred fourteen thousand one hundred fifty-nine dollars ).
Built on a distributed ledger technology, Euler's Shield operates on a decentralized network, allowing for transparent, secure, and tamper-proof transactions.
Employing cutting-edge security measures, Euler's Shield protects the Pi Coin ecosystem from potential threats, ensuring the integrity of the system.
Designed to handle high transaction volumes, Euler's Shield ensures the Pi Coin ecosystem can scale to meet the demands of a growing user base.
- Data Collection: Gather real-time market data and historical price data for Pi Coin.
- Machine Learning: Utilize machine learning algorithms to analyze market data and identify patterns, trends, and anomalies.
- Price Adjustment: Based on the analysis, adjust the supply of Pi Coin to maintain a stable price of $314.159 ( Three hundred fourteen thousand one hundred fifty-nine dollars ).
- Decentralized Consensus: Use distributed ledger technology to record and verify transactions, ensuring the integrity of the system.
- Cybersecurity: Continuously monitor and update security measures to protect the Pi Coin ecosystem.
- Clone the repository:
git clone https://github.com/KOSASIH/eulers-shield
- Install the required dependencies:
npm install
- Run the development server:
npm start
- Want to contribute to the development of Euler's Shield? Check out our CONTRIBUTING.md guide for more information.
- Want to report a bug or suggest a feature? Open an issue on our issues page.
Euler's Shield is licensed under the Apache 2.0 License. See LICENSE for more information.
- Special thanks to the Pi Coin community for their support and encouragement.
- Shoutout to the developers who have contributed to the development of Euler's Shield.
Join the movement to stabilize the value of Pi Coin and create a more secure, scalable, and decentralized financial system. Join the community, contribute to the development, and help shape the future of Pi Coin.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for eulers-shield
Similar Open Source Tools
![eulers-shield Screenshot](/screenshots_githubs/KOSASIH-eulers-shield.jpg)
eulers-shield
Euler's Shield is a decentralized, AI-powered financial system designed to stabilize the value of Pi Coin at $314.159. It combines blockchain, machine learning, and cybersecurity to ensure the security, scalability, and decentralization of the Pi Coin ecosystem.
![pi-nexus-autonomous-banking-network Screenshot](/screenshots_githubs/KOSASIH-pi-nexus-autonomous-banking-network.jpg)
pi-nexus-autonomous-banking-network
A decentralized, AI-driven system accelerating the Open Mainet Pi Network, connecting global banks for secure, efficient, and autonomous transactions. The Pi-Nexus Autonomous Banking Network is built using Raspberry Pi devices and allows for the creation of a decentralized, autonomous banking system.
![X-AnyLabeling Screenshot](/screenshots_githubs/CVHub520-X-AnyLabeling.jpg)
X-AnyLabeling
X-AnyLabeling is a robust annotation tool that seamlessly incorporates an AI inference engine alongside an array of sophisticated features. Tailored for practical applications, it is committed to delivering comprehensive, industrial-grade solutions for image data engineers. This tool excels in swiftly and automatically executing annotations across diverse and intricate tasks.
![chatgpt-infinity Screenshot](/screenshots_githubs/adamlui-chatgpt-infinity.jpg)
chatgpt-infinity
ChatGPT Infinity is a free and powerful add-on that makes ChatGPT generate infinite answers on any topic. It offers customizable topic selection, multilingual support, adjustable response interval, and auto-scroll feature for a seamless chat experience.
![chatgpt-auto-continue Screenshot](/screenshots_githubs/adamlui-chatgpt-auto-continue.jpg)
chatgpt-auto-continue
ChatGPT Auto-Continue is a userscript that automatically continues generating ChatGPT responses when chats cut off. It relies on the powerful chatgpt.js library and is easy to install and use. Simply install Tampermonkey and ChatGPT Auto-Continue, and visit chat.openai.com as normal. Multi-reply conversations will automatically continue generating when cut-off!
![intel-extension-for-transformers Screenshot](/screenshots_githubs/intel-intel-extension-for-transformers.jpg)
intel-extension-for-transformers
Intel® Extension for Transformers is an innovative toolkit designed to accelerate GenAI/LLM everywhere with the optimal performance of Transformer-based models on various Intel platforms, including Intel Gaudi2, Intel CPU, and Intel GPU. The toolkit provides the below key features and examples: * Seamless user experience of model compressions on Transformer-based models by extending [Hugging Face transformers](https://github.com/huggingface/transformers) APIs and leveraging [Intel® Neural Compressor](https://github.com/intel/neural-compressor) * Advanced software optimizations and unique compression-aware runtime (released with NeurIPS 2022's paper [Fast Distilbert on CPUs](https://arxiv.org/abs/2211.07715) and [QuaLA-MiniLM: a Quantized Length Adaptive MiniLM](https://arxiv.org/abs/2210.17114), and NeurIPS 2021's paper [Prune Once for All: Sparse Pre-Trained Language Models](https://arxiv.org/abs/2111.05754)) * Optimized Transformer-based model packages such as [Stable Diffusion](examples/huggingface/pytorch/text-to-image/deployment/stable_diffusion), [GPT-J-6B](examples/huggingface/pytorch/text-generation/deployment), [GPT-NEOX](examples/huggingface/pytorch/language-modeling/quantization#2-validated-model-list), [BLOOM-176B](examples/huggingface/pytorch/language-modeling/inference#BLOOM-176B), [T5](examples/huggingface/pytorch/summarization/quantization#2-validated-model-list), [Flan-T5](examples/huggingface/pytorch/summarization/quantization#2-validated-model-list), and end-to-end workflows such as [SetFit-based text classification](docs/tutorials/pytorch/text-classification/SetFit_model_compression_AGNews.ipynb) and [document level sentiment analysis (DLSA)](workflows/dlsa) * [NeuralChat](intel_extension_for_transformers/neural_chat), a customizable chatbot framework to create your own chatbot within minutes by leveraging a rich set of [plugins](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/neural_chat/docs/advanced_features.md) such as [Knowledge Retrieval](./intel_extension_for_transformers/neural_chat/pipeline/plugins/retrieval/README.md), [Speech Interaction](./intel_extension_for_transformers/neural_chat/pipeline/plugins/audio/README.md), [Query Caching](./intel_extension_for_transformers/neural_chat/pipeline/plugins/caching/README.md), and [Security Guardrail](./intel_extension_for_transformers/neural_chat/pipeline/plugins/security/README.md). This framework supports Intel Gaudi2/CPU/GPU. * [Inference](https://github.com/intel/neural-speed/tree/main) of Large Language Model (LLM) in pure C/C++ with weight-only quantization kernels for Intel CPU and Intel GPU (TBD), supporting [GPT-NEOX](https://github.com/intel/neural-speed/tree/main/neural_speed/models/gptneox), [LLAMA](https://github.com/intel/neural-speed/tree/main/neural_speed/models/llama), [MPT](https://github.com/intel/neural-speed/tree/main/neural_speed/models/mpt), [FALCON](https://github.com/intel/neural-speed/tree/main/neural_speed/models/falcon), [BLOOM-7B](https://github.com/intel/neural-speed/tree/main/neural_speed/models/bloom), [OPT](https://github.com/intel/neural-speed/tree/main/neural_speed/models/opt), [ChatGLM2-6B](https://github.com/intel/neural-speed/tree/main/neural_speed/models/chatglm), [GPT-J-6B](https://github.com/intel/neural-speed/tree/main/neural_speed/models/gptj), and [Dolly-v2-3B](https://github.com/intel/neural-speed/tree/main/neural_speed/models/gptneox). Support AMX, VNNI, AVX512F and AVX2 instruction set. We've boosted the performance of Intel CPUs, with a particular focus on the 4th generation Intel Xeon Scalable processor, codenamed [Sapphire Rapids](https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors.html).
![googlegpt Screenshot](/screenshots_githubs/KudoAI-googlegpt.jpg)
googlegpt
GoogleGPT is a browser extension that brings the power of ChatGPT to Google Search. With GoogleGPT, you can ask ChatGPT questions and get answers directly in your search results. You can also use GoogleGPT to generate text, translate languages, and more. GoogleGPT is compatible with all major browsers, including Chrome, Firefox, Edge, and Safari.
![vectordb-recipes Screenshot](/screenshots_githubs/lancedb-vectordb-recipes.jpg)
vectordb-recipes
This repository contains examples, applications, starter code, & tutorials to help you kickstart your GenAI projects. * These are built using LanceDB, a free, open-source, serverless vectorDB that **requires no setup**. * It **integrates into python data ecosystem** so you can simply start using these in your existing data pipelines in pandas, arrow, pydantic etc. * LanceDB has **native Typescript SDK** using which you can **run vector search** in serverless functions! This repository is divided into 3 sections: - Examples - Get right into the code with minimal introduction, aimed at getting you from an idea to PoC within minutes! - Applications - Ready to use Python and web apps using applied LLMs, VectorDB and GenAI tools - Tutorials - A curated list of tutorials, blogs, Colabs and courses to get you started with GenAI in greater depth.
![mnn-llm Screenshot](/screenshots_githubs/wangzhaode-mnn-llm.jpg)
mnn-llm
MNN-LLM is a high-performance inference engine for large language models (LLMs) on mobile and embedded devices. It provides optimized implementations of popular LLM models, such as ChatGPT, BLOOM, and GPT-3, enabling developers to easily integrate these models into their applications. MNN-LLM is designed to be efficient and lightweight, making it suitable for resource-constrained devices. It supports various deployment options, including mobile apps, web applications, and embedded systems. With MNN-LLM, developers can leverage the power of LLMs to enhance their applications with natural language processing capabilities, such as text generation, question answering, and dialogue generation.
![neural-compressor Screenshot](/screenshots_githubs/intel-neural-compressor.jpg)
neural-compressor
Intel® Neural Compressor is an open-source Python library that supports popular model compression techniques such as quantization, pruning (sparsity), distillation, and neural architecture search on mainstream frameworks such as TensorFlow, PyTorch, ONNX Runtime, and MXNet. It provides key features, typical examples, and open collaborations, including support for a wide range of Intel hardware, validation of popular LLMs, and collaboration with cloud marketplaces, software platforms, and open AI ecosystems.
![llama.cpp Screenshot](/screenshots_githubs/ggerganov-llama.cpp.jpg)
llama.cpp
llama.cpp is a C++ implementation of LLaMA, a large language model from Meta. It provides a command-line interface for inference and can be used for a variety of tasks, including text generation, translation, and question answering. llama.cpp is highly optimized for performance and can be run on a variety of hardware, including CPUs, GPUs, and TPUs.
![userscripts Screenshot](/screenshots_githubs/adamlui-userscripts.jpg)
userscripts
Greasemonkey userscripts. A userscript manager such as Tampermonkey is required to run these scripts.
![Awesome-Segment-Anything Screenshot](/screenshots_githubs/Vision-Intelligence-and-Robots-Group-Awesome-Segment-Anything.jpg)
Awesome-Segment-Anything
The Segment Anything Model (SAM) is a powerful tool that allows users to segment any object in an image with just a few clicks. This makes it a great tool for a variety of tasks, such as object detection, tracking, and editing. SAM is also very easy to use, making it a great option for both beginners and experienced users.
![TEN-Agent Screenshot](/screenshots_githubs/TEN-framework-TEN-Agent.jpg)
TEN-Agent
TEN Agent is an open-source multimodal agent powered by the world’s first real-time multimodal framework, TEN Framework. It offers high-performance real-time multimodal interactions, multi-language and multi-platform support, edge-cloud integration, flexibility beyond model limitations, and real-time agent state management. Users can easily build complex AI applications through drag-and-drop programming, integrating audio-visual tools, databases, RAG, and more.
![Bert-VITS2 Screenshot](/screenshots_githubs/fishaudio-Bert-VITS2.jpg)
Bert-VITS2
Bert-VITS2 is a repository that provides a backbone with multilingual BERT for text-to-speech (TTS) applications. It offers an alternative to BV2/GSV projects and is inspired by the MassTTS project. Users can refer to the code to learn how to train models for TTS. The project is not maintained actively in the short term. It is not to be used for any purposes that violate the laws of the People's Republic of China, and strictly prohibits any political-related use.
![chatgpt-widescreen Screenshot](/screenshots_githubs/adamlui-chatgpt-widescreen.jpg)
chatgpt-widescreen
ChatGPT Widescreen Mode is a browser extension that adds widescreen and fullscreen modes to ChatGPT, enhancing chat sessions by reducing scrolling and creating a more immersive viewing experience. Users can experience clearer programming code display, view multi-step instructions or long recipes on a single page, enjoy original content in a visually pleasing format, customize features like a larger chatbox and hidden header/footer, and use the tool with chat.openai.com and poe.com. The extension is compatible with various browsers and relies on code from the chatgpt.js library under the MIT license.
For similar tasks
![eulers-shield Screenshot](/screenshots_githubs/KOSASIH-eulers-shield.jpg)
eulers-shield
Euler's Shield is a decentralized, AI-powered financial system designed to stabilize the value of Pi Coin at $314.159. It combines blockchain, machine learning, and cybersecurity to ensure the security, scalability, and decentralization of the Pi Coin ecosystem.
![llm-app Screenshot](/screenshots_githubs/pathwaycom-llm-app.jpg)
llm-app
Pathway's LLM (Large Language Model) Apps provide a platform to quickly deploy AI applications using the latest knowledge from data sources. The Python application examples in this repository are Docker-ready, exposing an HTTP API to the frontend. These apps utilize the Pathway framework for data synchronization, API serving, and low-latency data processing without the need for additional infrastructure dependencies. They connect to document data sources like S3, Google Drive, and Sharepoint, offering features like real-time data syncing, easy alert setup, scalability, monitoring, security, and unification of application logic.
![kaytu Screenshot](/screenshots_githubs/kaytu-io-kaytu.jpg)
kaytu
Kaytu is an AI platform that enhances cloud efficiency by analyzing historical usage data and providing intelligent recommendations for optimizing instance sizes. Users can pay for only what they need without compromising the performance of their applications. The platform is easy to use with a one-line command, allows customization for specific requirements, and ensures security by extracting metrics from the client side. Kaytu is open-source and supports AWS services, with plans to expand to GCP, Azure, GPU optimization, and observability data from Prometheus in the future.
![awesome-production-llm Screenshot](/screenshots_githubs/jihoo-kim-awesome-production-llm.jpg)
awesome-production-llm
This repository is a curated list of open-source libraries for production large language models. It includes tools for data preprocessing, training/finetuning, evaluation/benchmarking, serving/inference, application/RAG, testing/monitoring, and guardrails/security. The repository also provides a new category called LLM Cookbook/Examples for showcasing examples and guides on using various LLM APIs.
![holisticai Screenshot](/screenshots_githubs/holistic-ai-holisticai.jpg)
holisticai
Holistic AI is an open-source library dedicated to assessing and improving the trustworthiness of AI systems. It focuses on measuring and mitigating bias, explainability, robustness, security, and efficacy in AI models. The tool provides comprehensive metrics, mitigation techniques, a user-friendly interface, and visualization tools to enhance AI system trustworthiness. It offers documentation, tutorials, and detailed installation instructions for easy integration into existing workflows.
![langkit Screenshot](/screenshots_githubs/whylabs-langkit.jpg)
langkit
LangKit is an open-source text metrics toolkit for monitoring language models. It offers methods for extracting signals from input/output text, compatible with whylogs. Features include text quality, relevance, security, sentiment, toxicity analysis. Installation via PyPI. Modules contain UDFs for whylogs. Benchmarks show throughput on AWS instances. FAQs available.
![nesa Screenshot](/screenshots_githubs/nesaorg-nesa.jpg)
nesa
Nesa is a tool that allows users to run on-prem AI for a fraction of the cost through a blind API. It provides blind privacy, zero latency on protected inference, wide model coverage, cost savings compared to cloud and on-prem AI, RAG support, and ChatGPT compatibility. Nesa achieves blind AI through Equivariant Encryption (EE), a new security technology that provides complete inference encryption with no additional latency. EE allows users to perform inference on neural networks without exposing the underlying data, preserving data privacy and security.
![k8sgateway Screenshot](/screenshots_githubs/k8sgateway-k8sgateway.jpg)
k8sgateway
K8sGateway is a feature-rich, fast, and flexible Kubernetes-native API gateway built on Envoy proxy and Kubernetes Gateway API. It excels in function-level routing, supports legacy apps, microservices, and serverless. It offers robust discovery capabilities, seamless integration with open-source projects, and supports hybrid applications with various technologies, architectures, protocols, and clouds.
For similar jobs
![ethereum-etl-airflow Screenshot](/screenshots_githubs/blockchain-etl-ethereum-etl-airflow.jpg)
ethereum-etl-airflow
This repository contains Airflow DAGs for extracting, transforming, and loading (ETL) data from the Ethereum blockchain into BigQuery. The DAGs use the Google Cloud Platform (GCP) services, including BigQuery, Cloud Storage, and Cloud Composer, to automate the ETL process. The repository also includes scripts for setting up the GCP environment and running the DAGs locally.
![airnode Screenshot](/screenshots_githubs/api3dao-airnode.jpg)
airnode
Airnode is a fully-serverless oracle node that is designed specifically for API providers to operate their own oracles.
![CHATPGT-MEV-BOT Screenshot](/screenshots_githubs/rjahelehejyb19-CHATPGT-MEV-BOT.jpg)
CHATPGT-MEV-BOT
The 𝓜𝓔𝓥-𝓑𝓞𝓣 is a revolutionary tool that empowers users to maximize their ETH earnings through advanced slippage techniques within the Ethereum ecosystem. Its user-centric design, optimized earning mechanism, and comprehensive security measures make it an indispensable tool for traders seeking to enhance their crypto trading strategies. With its current free access, there's no better time to explore the 𝓜𝓔𝓥-𝓑𝓞𝓣's capabilities and witness the transformative impact it can have on your crypto trading journey.
![CortexTheseus Screenshot](/screenshots_githubs/CortexFoundation-CortexTheseus.jpg)
CortexTheseus
CortexTheseus is a full node implementation of the Cortex blockchain, written in C++. It provides a complete set of features for interacting with the Cortex network, including the ability to create and manage accounts, send and receive transactions, and participate in consensus. CortexTheseus is designed to be scalable, secure, and easy to use, making it an ideal choice for developers building applications on the Cortex blockchain.
![CHATPGT-MEV-BOT-ETH Screenshot](/screenshots_githubs/ceresogranics-CHATPGT-MEV-BOT-ETH.jpg)
CHATPGT-MEV-BOT-ETH
This tool is a bot that monitors the performance of MEV transactions on the Ethereum blockchain. It provides real-time data on MEV profitability, transaction volume, and network congestion. The bot can be used to identify profitable MEV opportunities and to track the performance of MEV strategies.
![airdrop-checker Screenshot](/screenshots_githubs/munris-vlad-airdrop-checker.jpg)
airdrop-checker
Airdrop-checker is a tool that helps you to check if you are eligible for any airdrops. It supports multiple airdrops, including Altlayer, Rabby points, Zetachain, Frame, Anoma, Dymension, and MEME. To use the tool, you need to install it using npm and then fill the addresses files in the addresses folder with your wallet addresses. Once you have done this, you can run the tool using npm start.
![go-cyber Screenshot](/screenshots_githubs/cybercongress-go-cyber.jpg)
go-cyber
Cyber is a superintelligence protocol that aims to create a decentralized and censorship-resistant internet. It uses a novel consensus mechanism called CometBFT and a knowledge graph to store and process information. Cyber is designed to be scalable, secure, and efficient, and it has the potential to revolutionize the way we interact with the internet.
![bittensor Screenshot](/screenshots_githubs/opentensor-bittensor.jpg)
bittensor
Bittensor is an internet-scale neural network that incentivizes computers to provide access to machine learning models in a decentralized and censorship-resistant manner. It operates through a token-based mechanism where miners host, train, and procure machine learning systems to fulfill verification problems defined by validators. The network rewards miners and validators for their contributions, ensuring continuous improvement in knowledge output. Bittensor allows anyone to participate, extract value, and govern the network without centralized control. It supports tasks such as generating text, audio, images, and extracting numerical representations.