AHU-AI-Repository
安徽大学人工智能学院资源仓库
Stars: 111
This repository is dedicated to the learning and exchange of resources for the School of Artificial Intelligence at Anhui University. Notes will be published on this website first: https://www.aoaoaoao.cn and will be synchronized to the repository regularly. You can also contact me at [email protected].
README:
这是一个致力于安徽大学人工智能学院学习交流的平台
你也可以通过[email protected]来联系到我们
近期我们发现,有人在CSDN和gitcode等平台分享或复制了本仓库,并且使用DylanAo这个账户名称,对此我们想说的有如下几点:
- 我们对分享本仓库持乐观态度,但是并不希望您用DylanAo的名义去分发本仓库
- 本仓库在任何情况下都将会是开源且免费的,我们不会让您有偿去使用本仓库,如果在其他平台发现需要有偿使用,请擦亮眼睛,谨防上当受骗
- 本仓库唯一发布地址是:github.com/DylanAo/AHU-AI-Repository,我们在其他任何平台都不会发布本仓库,也不会使用 DylanAo的名称
- 我们对在其他平台上发布的本仓库不负任何责任,因为这不是我们发布的
我们不希望看到本应该公开的学习资料却被到处贩卖,拿来牟利
我们不希望看到有人苦苦寻找资料却根本找不到
我们希望所有人学习都应该是站在同一起跑线上的公平竞争
- 随便使用,下载仓库
- 上传并完善这个仓库(注意:不接受出版的电子书类)
- 修改代码,笔记的错误内容
- 免费,无条件的分享给其他同学
- 所有资料仅供学习参考,并剔除过时且已经不适用资料
- 笔记类资料建议用VSCode打开,并安装md文件预览插件和LaTex插件
- 部分资料为其他学院资料,可能与本学院所授课程不符,仅供参考
请直接pr,看到后我会进行处理的
若想要一起维护该仓库,可通过邮箱[email protected]联系我
这种方法需要直接点击每个文件,手动下载比较麻烦
以上两种方法都不需要github账号
-
在浏览器插件里面下载GitZip for github
推荐使用Edge或Chrome浏览器
-
获取token,输入密码后会自动跳转回来,此时token就已经自动填好了
注意:此步骤需要你有一个github账号,如果不进行此步,该插件也是可以使用,但是次数限制比较严重,可能无法完成正常下载
git clone https://github.com/DylanAo/AHU-AI-Repository.git
- 未特殊标注的课程,均为机器人与人工智能都学习课程
- 随着培养方案调整,不同课程学习时间、考核方式、内容难度可能略有出入
- 本仓库只包含必修或部分需要考试的专选的课程
- 目前尚未完善,主要包含以下内容:
- 一些在学习过程中可能用到的资料
- VScode的基础配置文件:Cpp
- Markdown速成手册
- Git使用教程
- 人工智能学院实验报告模板(手写用)
- 专业选修课的笔记资料等(并不是全部专选)
- PLC
- MATLAB
- Java
- Python
- 人机交互技术
- 神经网络与深度学习(含实验教程及复习总结)
- 高数上:刷仓库内卷子
- C语言:多写书后作业的程序,或者去公开的oj等平台找题目/项目练习自学
- 高数下:刷仓库内卷子
- 大物上:刷仓库内卷子
- 线性代数:刷仓库内卷子
- 数据结构:多理解原理,多写程序
- 大物下:刷仓库内卷子
- 概率论:刷仓库内卷子
- 复变函数:记住主要公式,刷仓库卷子
- 离散上:仓库卷子与考试题目不匹配,建议练熟课后习题(考试出原题),并去找教材对应辅练习(会刷到原题)或者是其他教辅(也会有原题)
- 电路与模电(机器人专核、人工智能必修专选):机器人起期末闭卷考试,人工智能期末不考试
- 数电(人工智能):理解知识,刷仓库卷子(部分题目超出考试范围)
- 凸优化(人工智能):课程很难
- 离散下:仓库卷子与考试侧重点不匹配,建议练熟课后习题(考试出原题),并去找教材对应辅练习(会刷到原题)或者是其他教辅(也会有原题)
- 数字信号处理(人工智能):
- 计算机组成原理(人工智能):
- 程序设计与算法课程(人工智能):就是将数据结构学到东西应用,写个程序,可看仓库中代码
- 信号与系统(机器人):做懂课后作业,刷仓库卷子(部分题目超出考试范围)
- 数电(机器人):与人工智能大二上课程完全相同,理解知识,刷仓库卷子(部分题目超出考试范围)
- 工程制图(机器人):多做几遍练习册上题目,考试出原题,电子版在仓库中,可重复利用
- 机械学基础(机器人):相信张老师,张老师为了你不挂科已经做出很大努力了。你可以一节课都不听,但是重点一定要背
- 计算机网络(人工智能): 计网知识点多且杂,可以参考机器工业出版社的自顶向下方法同步学习
- 操作系统(人工智能): 着重在掌握不同类型的系统之间的特性和区别、进程的原语操作、调度算法(进程调度、作业调度)、存储模式(虚拟存储器/存储器的段页式存储等)、银行家算法即安全性检测
- 机器学习(人工智能):
- 智能控制理论(人工智能):不是宋军就是win(自求多福)
- 程序设计与算法课程(机器人):与人工智能大二下的课程完全相同,可看仓库中代码
- 自动控制原理(机器人):仓库内笔记可大致梳理知识点,难是一定的,但是找到主线就会很简单。请放心,考试不会出很难的题。
- 微机原理(机器人):与人工智能的计组类似,但没有那么多知识,上课速度快且杂,看仓库中笔记可大致梳理知识点。但是,考试是考试,会写汇编是汇编,要根据考试重点来复习。(不得不提及上课没讲但是重点有且考试中占很大分数后面几章内容了。请放心老师真的会捞你的,只要认真复习就不会挂)
- 传感器与检测技术(机器人):相信张老师,张老师为了你不挂科已经做出很大努力了。你可以一节课都不听,但是重点一定要背
- 工程经济学(机器人):考试很简单,但是闭卷,背好笔记即可(以后有可能是开卷)
- 工程经济学(人工智能):和大三上机器人学的一样,看仓库内笔记写一下试卷就行
- 自然语言处理(人工智能):
- 计算机视觉(人工智能):
- 软件工程概论(人工智能):
- 机器学习课程设计(人工智能):
- 机器人运动控制(机器人):上课水中水,最后会画重点,配套B站视频BV1qr421t7V7
- 机器人视觉(机器人):课程较为简单,上课认真听即可
- 计算机控制系统(机器人):可以和自控对照学习,难度适中,配套B站视频BV15C411G7Po
- 机器人机械与结构设计(机器人):相信张老师,期末有重点
如果你觉得资料对你有帮助的话,别忘记点个Star⭐
如果有任何疑问、建议,可直接在issue里面提及,或者给我发邮件([email protected]),我会尽快回复的
同时,欢迎加入我们,积极上传资料(直接PR即可)
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for AHU-AI-Repository
Similar Open Source Tools
AHU-AI-Repository
This repository is dedicated to the learning and exchange of resources for the School of Artificial Intelligence at Anhui University. Notes will be published on this website first: https://www.aoaoaoao.cn and will be synchronized to the repository regularly. You can also contact me at [email protected].
llm-resource
llm-resource is a comprehensive collection of high-quality resources for Large Language Models (LLM). It covers various aspects of LLM including algorithms, training, fine-tuning, alignment, inference, data engineering, compression, evaluation, prompt engineering, AI frameworks, AI basics, AI infrastructure, AI compilers, LLM application development, LLM operations, AI systems, and practical implementations. The repository aims to gather and share valuable resources related to LLM for the community to benefit from.
AI-Drug-Discovery-Design
AI-Drug-Discovery-Design is a repository focused on Artificial Intelligence-assisted Drug Discovery and Design. It explores the use of AI technology to accelerate and optimize the drug development process. The advantages of AI in drug design include speeding up research cycles, improving accuracy through data-driven models, reducing costs by minimizing experimental redundancies, and enabling personalized drug design for specific patients or disease characteristics.
NGCBot
NGCBot is a WeChat bot based on the HOOK mechanism, supporting scheduled push of security news from FreeBuf, Xianzhi, Anquanke, and Qianxin Attack and Defense Community, KFC copywriting, filing query, phone number attribution query, WHOIS information query, constellation query, weather query, fishing calendar, Weibei threat intelligence query, beautiful videos, beautiful pictures, and help menu. It supports point functions, automatic pulling of people, ad detection, automatic mass sending, Ai replies, rich customization, and easy for beginners to use. The project is open-source and periodically maintained, with additional features such as Ai (Gpt, Xinghuo, Qianfan), keyword invitation to groups, automatic mass sending, and group welcome messages.
duix.ai
Duix is a silicon-based digital human SDK for intelligent interaction, providing users with instant virtual human interaction experience on devices like Android and iOS. The SDK offers intuitive effect display and supports user customization through open documentation. It is fully open-source, allowing developers to understand its workings, optimize, and innovate further.
awesome-chatgpt-zh
The Awesome ChatGPT Chinese Guide project aims to help Chinese users understand and use ChatGPT. It collects various free and paid ChatGPT resources, as well as methods to communicate more effectively with ChatGPT in Chinese. The repository contains a rich collection of ChatGPT tools, applications, and examples.
aimoneyhunter
AiMoneyHunter is a comprehensive collection of information on AI side hustle opportunities, covering various methods, technologies, tools, platforms, and channels for making money with AI. It aims to break information barriers in the AI era, enabling everyone to leverage AI intelligence for side hustles and earn extra income. The repository includes curated AI-related content sources, tips on starting a side hustle, and insights on using AI technologies for various money-making tasks.
Korea-Startups
Korea-Startups is a repository containing a comprehensive list of major tech companies and startups in Korea. It covers a wide range of industries such as mobility, local community trading, food tech, interior design, fintech, AI, natural language processing, computer vision, robotics, legal tech, and more. The repository provides detailed information about each company's field, key services, and unique features, showcasing the diverse and innovative startup ecosystem in Korea.
vpnfast.github.io
VPNFast is a lightweight and fast VPN service provider that offers secure and private internet access. With VPNFast, users can protect their online privacy, bypass geo-restrictions, and secure their internet connection from hackers and snoopers. The service provides high-speed servers in multiple locations worldwide, ensuring a reliable and seamless VPN experience for users. VPNFast is easy to use, with a user-friendly interface and simple setup process. Whether you're browsing the web, streaming content, or accessing sensitive information, VPNFast helps you stay safe and anonymous online.
how-to-optim-algorithm-in-cuda
This repository documents how to optimize common algorithms based on CUDA. It includes subdirectories with code implementations for specific optimizations. The optimizations cover topics such as compiling PyTorch from source, NVIDIA's reduce optimization, OneFlow's elementwise template, fast atomic add for half data types, upsample nearest2d optimization in OneFlow, optimized indexing in PyTorch, OneFlow's softmax kernel, linear attention optimization, and more. The repository also includes learning resources related to deep learning frameworks, compilers, and optimization techniques.
Code-Interpreter-Api
Code Interpreter API is a project that combines a scheduling center with a sandbox environment, dedicated to creating the world's best code interpreter. It aims to provide a secure, reliable API interface for remotely running code and obtaining execution results, accelerating the development of various AI agents, and being a boon to many AI enthusiasts. The project innovatively combines Docker container technology to achieve secure isolation and execution of Python code. Additionally, the project supports storing generated image data in a PostgreSQL database and accessing it through API endpoints, providing rich data processing and storage capabilities.
blog
这是一个程序员关于 ChatGPT 学习过程的记录,其中包括了 ChatGPT 的使用技巧、相关工具和资源的整理,以及一些个人见解和思考。 **使用技巧** * **充值 OpenAI API**:可以通过 https://beta.openai.com/account/api-keys 进行充值,支持信用卡和 PayPal。 * **使用专梯**:推荐使用稳定的专梯,可以有效提高 ChatGPT 的访问速度和稳定性。 * **使用魔法**:可以通过 https://my.x-air.app:666/#/register?aff=32853 访问 ChatGPT,无需魔法即可访问。 * **下载各种 apk**:可以通过 https://apkcombo.com 下载各种安卓应用的 apk 文件。 * **ChatGPT 官网**:ChatGPT 的官方网站是 https://ai.com。 * **Midjourney**:Midjourney 是一个生成式 AI 图像平台,可以通过 https://midjourney.com 访问。 * **文本转视频**:可以通过 https://www.d-id.com 将文本转换为视频。 * **国内大模型**:国内也有很多大模型,如阿里巴巴的通义千问、百度文心一言、讯飞星火、阿里巴巴通义听悟等。 * **查看 OpenAI 状态**:可以通过 https://status.openai.com/ 查看 OpenAI 的服务状态。 * **Canva 画图**:Canva 是一个在线平面设计平台,可以通过 https://www.canva.cn 进行画图。 **相关工具和资源** * **文字转语音**:可以通过 https://modelscope.cn/models?page=1&tasks=text-to-speech&type=audio 找到文字转语音的模型。 * **可好好玩玩的项目**: * https://github.com/sunner/ChatALL * https://github.com/labring/FastGPT * https://github.com/songquanpeng/one-api * **个人博客**: * https://baoyu.io/ * https://gorden-sun.notion.site/527689cd2b294e60912f040095e803c5?v=4f6cc12006c94f47aee4dc909511aeb5 * **srt 2 lrc 歌词**:可以通过 https://gotranscript.com/subtitle-converter 将 srt 格式的字幕转换为 lrc 格式的歌词。 * **5 种速率限制**:OpenAI API 有 5 种速率限制:RPM(每分钟请求数)、RPD(每天请求数)、TPM(每分钟 tokens 数量)、TPD(每天 tokens 数量)、IPM(每分钟图像数量)。 * **扣子平台**:coze.cn 是一个扣子平台,可以提供各种扣子。 * **通过云函数免费使用 GPT-3.5**:可以通过 https://juejin.cn/post/7353849549540589587 免费使用 GPT-3.5。 * **不蒜子 统计网页基数**:可以通过 https://busuanzi.ibruce.info/ 统计网页的基数。 * **视频总结和翻译网页**:可以通过 https://glarity.app/zh-CN 总结和翻译视频。 * **视频翻译和配音工具**:可以通过 https://github.com/jianchang512/pyvideotrans 翻译和配音视频。 * **文字生成音频**:可以通过 https://www.cnblogs.com/jijunjian/p/18118366 将文字生成音频。 * **memo ai**:memo.ac 是一个多模态 AI 平台,可以将视频链接、播客链接、本地音视频转换为文字,支持多语言转录后翻译,还可以将文字转换为新的音频。 * **视频总结工具**:可以通过 https://summarize.ing/ 总结视频。 * **可每天免费玩玩**:可以通过 https://www.perplexity.ai/ 每天免费玩玩。 * **Suno.ai**:Suno.ai 是一个 AI 语言模型,可以通过 https://bibigpt.co/ 访问。 * **CapCut**:CapCut 是一个视频编辑软件,可以通过 https://www.capcut.cn/ 下载。 * **Valla.ai**:Valla.ai 是一个多模态 AI 模型,可以通过 https://www.valla.ai/ 访问。 * **Viggle.ai**:Viggle.ai 是一个 AI 视频生成平台,可以通过 https://viggle.ai 访问。 * **使用免费的 GPU 部署文生图大模型**:可以通过 https://www.cnblogs.com/xuxiaona/p/18088404 部署文生图大模型。 * **语音转文字**:可以通过 https://speech.microsoft.com/portal 将语音转换为文字。 * **投资界的 ai**:可以通过 https://reportify.cc/ 了解投资界的 ai。 * **抓取小视频 app 的各种信息**:可以通过 https://github.com/NanmiCoder/MediaCrawler 抓取小视频 app 的各种信息。 * **马斯克 Grok1 开源**:马斯克的 Grok1 模型已经开源,可以通过 https://github.com/xai-org/grok-1 访问。 * **ChatALL**:ChatALL 是一个跨端支持的聊天机器人,可以通过 https://github.com/sunner/ChatALL 访问。 * **零一万物**:零一万物是一个 AI 平台,可以通过 https://www.01.ai/cn 访问。 * **智普**:智普是一个 AI 语言模型,可以通过 https://chatglm.cn/ 访问。 * **memo ai 下载**:可以通过 https://memo.ac/ 下载 memo ai。 * **ffmpeg 学习**:可以通过 https://www.ruanyifeng.com/blog/2020/01/ffmpeg.html 学习 ffmpeg。 * **自动生成文章小工具**:可以通过 https://www.cognition-labs.com/blog 生成文章。 * **简易商城**:可以通过 https://www.cnblogs.com/whuanle/p/18086537 搭建简易商城。 * **物联网**:可以通过 https://www.cnblogs.com/xuxiaona/p/18088404 学习物联网。 * **自定义表单、自定义列表、自定义上传和下载、自定义流程、自定义报表**:可以通过 https://www.cnblogs.com/whuanle/p/18086537 实现自定义表单、自定义列表、自定义上传和下载、自定义流程、自定义报表。 **个人见解和思考** * ChatGPT 是一个强大的工具,可以用来提高工作效率和创造力。 * ChatGPT 的使用门槛较低,即使是非技术人员也可以轻松上手。 * ChatGPT 的发展速度非常快,未来可能会对各个行业产生深远的影响。 * 我们应该理性看待 ChatGPT,既要看到它的优点,也要意识到它的局限性。 * 我们应该积极探索 ChatGPT 的应用场景,为社会创造价值。
MoneyPrinterPlus
MoneyPrinterPlus is a project designed to help users easily make money in the era of short videos. It leverages AI big model technology to batch generate various short videos, perform video editing, and automatically publish videos to popular platforms like Douyin, Kuaishou, Xiaohongshu, and Video Number. The tool covers a wide range of functionalities including integrating with major AI big model tools, supporting various voice types, offering video transition effects, enabling customization of subtitles, and more. It aims to simplify the process of creating and sharing videos to monetize traffic.
MarkMap-OpenAi-ChatGpt
MarkMap-OpenAi-ChatGpt is a Vue.js-based mind map generation tool that allows users to generate mind maps by entering titles or content. The application integrates the markmap-lib and markmap-view libraries, supports visualizing mind maps, and provides functions for zooming and adapting the map to the screen. Users can also export the generated mind map in PNG, SVG, JPEG, and other formats. This project is suitable for quickly organizing ideas, study notes, project planning, etc. By simply entering content, users can get an intuitive mind map that can be continuously expanded, downloaded, and shared.
chatwiki
ChatWiki is an open-source knowledge base AI question-answering system. It is built on large language models (LLM) and retrieval-augmented generation (RAG) technologies, providing out-of-the-box data processing, model invocation capabilities, and helping enterprises quickly build their own knowledge base AI question-answering systems. It offers exclusive AI question-answering system, easy integration of models, data preprocessing, simple user interface design, and adaptability to different business scenarios.
airda
airda(Air Data Agent) is a multi-agent system for data analysis, which can understand data development and data analysis requirements, understand data, and generate SQL and Python code for data query, data visualization, machine learning and other tasks.
For similar tasks
Azure-Analytics-and-AI-Engagement
The Azure-Analytics-and-AI-Engagement repository provides packaged Industry Scenario DREAM Demos with ARM templates (Containing a demo web application, Power BI reports, Synapse resources, AML Notebooks etc.) that can be deployed in a customer’s subscription using the CAPE tool within a matter of few hours. Partners can also deploy DREAM Demos in their own subscriptions using DPoC.
sorrentum
Sorrentum is an open-source project that aims to combine open-source development, startups, and brilliant students to build machine learning, AI, and Web3 / DeFi protocols geared towards finance and economics. The project provides opportunities for internships, research assistantships, and development grants, as well as the chance to work on cutting-edge problems, learn about startups, write academic papers, and get internships and full-time positions at companies working on Sorrentum applications.
tidb
TiDB is an open-source distributed SQL database that supports Hybrid Transactional and Analytical Processing (HTAP) workloads. It is MySQL compatible and features horizontal scalability, strong consistency, and high availability.
zep-python
Zep is an open-source platform for building and deploying large language model (LLM) applications. It provides a suite of tools and services that make it easy to integrate LLMs into your applications, including chat history memory, embedding, vector search, and data enrichment. Zep is designed to be scalable, reliable, and easy to use, making it a great choice for developers who want to build LLM-powered applications quickly and easily.
telemetry-airflow
This repository codifies the Airflow cluster that is deployed at workflow.telemetry.mozilla.org (behind SSO) and commonly referred to as "WTMO" or simply "Airflow". Some links relevant to users and developers of WTMO: * The `dags` directory in this repository contains some custom DAG definitions * Many of the DAGs registered with WTMO don't live in this repository, but are instead generated from ETL task definitions in bigquery-etl * The Data SRE team maintains a WTMO Developer Guide (behind SSO)
mojo
Mojo is a new programming language that bridges the gap between research and production by combining Python syntax and ecosystem with systems programming and metaprogramming features. Mojo is still young, but it is designed to become a superset of Python over time.
pandas-ai
PandasAI is a Python library that makes it easy to ask questions to your data in natural language. It helps you to explore, clean, and analyze your data using generative AI.
databend
Databend is an open-source cloud data warehouse that serves as a cost-effective alternative to Snowflake. With its focus on fast query execution and data ingestion, it's designed for complex analysis of the world's largest datasets.
For similar jobs
LLM-FineTuning-Large-Language-Models
This repository contains projects and notes on common practical techniques for fine-tuning Large Language Models (LLMs). It includes fine-tuning LLM notebooks, Colab links, LLM techniques and utils, and other smaller language models. The repository also provides links to YouTube videos explaining the concepts and techniques discussed in the notebooks.
lloco
LLoCO is a technique that learns documents offline through context compression and in-domain parameter-efficient finetuning using LoRA, which enables LLMs to handle long context efficiently.
camel
CAMEL is an open-source library designed for the study of autonomous and communicative agents. We believe that studying these agents on a large scale offers valuable insights into their behaviors, capabilities, and potential risks. To facilitate research in this field, we implement and support various types of agents, tasks, prompts, models, and simulated environments.
llm-baselines
LLM-baselines is a modular codebase to experiment with transformers, inspired from NanoGPT. It provides a quick and easy way to train and evaluate transformer models on a variety of datasets. The codebase is well-documented and easy to use, making it a great resource for researchers and practitioners alike.
python-tutorial-notebooks
This repository contains Jupyter-based tutorials for NLP, ML, AI in Python for classes in Computational Linguistics, Natural Language Processing (NLP), Machine Learning (ML), and Artificial Intelligence (AI) at Indiana University.
EvalAI
EvalAI is an open-source platform for evaluating and comparing machine learning (ML) and artificial intelligence (AI) algorithms at scale. It provides a central leaderboard and submission interface, making it easier for researchers to reproduce results mentioned in papers and perform reliable & accurate quantitative analysis. EvalAI also offers features such as custom evaluation protocols and phases, remote evaluation, evaluation inside environments, CLI support, portability, and faster evaluation.
Weekly-Top-LLM-Papers
This repository provides a curated list of weekly published Large Language Model (LLM) papers. It includes top important LLM papers for each week, organized by month and year. The papers are categorized into different time periods, making it easy to find the most recent and relevant research in the field of LLM.
self-llm
This project is a Chinese tutorial for domestic beginners based on the AutoDL platform, providing full-process guidance for various open-source large models, including environment configuration, local deployment, and efficient fine-tuning. It simplifies the deployment, use, and application process of open-source large models, enabling more ordinary students and researchers to better use open-source large models and helping open and free large models integrate into the lives of ordinary learners faster.