kairon
Agentic AI platform that harnesses Visual LLM Chaining to build proactive digital assistants
Stars: 255
Kairon is an open-source conversational digital transformation platform that helps build LLM-based digital assistants at scale. It provides a no-coding web interface for adapting, training, testing, and maintaining AI assistants. Kairon focuses on pre-processing data for chatbots, including question augmentation, knowledge graph generation, and post-processing metrics. It offers end-to-end lifecycle management, low-code/no-code interface, secure script injection, telemetry monitoring, chat client designer, analytics module, and real-time struggle analytics. Kairon is suitable for teams and individuals looking for an easy interface to create, train, test, and deploy digital assistants.
README:
Kairon is now envisioned as a conversational digital transformation platform that helps build LLM based digital assistants at scale. It is designed to make the lives of those who work with ai-assistants easy, by giving them a no-coding web interface to adapt , train , test and maintain such assistants . We are now enhancing the backbone of Kairon with a full fledged context management system to build proactive digital assistants .
What is Kairon?
Kairon is currently a set of tools built on the RASA framework with a helpful UI interface . While RASA focuses on technology of chatbots itself. Kairon on the other hand focuses on technology that deal with pre-processing of data that are needed by this framework. These include question augmentation and generation of knowledge graphs that can be used to automatically generate intents, questions and responses. It also deals with the post processing and maintenance of these bots such metrics / follow-up messages etc.
What can it do?
Kairon is open-source. It is a Conversational digital transformation platform: Kairon is a platform that allows companies to create and deploy digital assistants to interact with customers in a conversational manner.
End-to-end lifecycle management: Kairon takes care of the entire digital assistant lifecycle, from creation to deployment and monitoring, freeing up company resources to focus on other tasks. Tethered digital assistants: Kairon’s digital assistants are tethered to the platform, which allows for real-time monitoring of their performance and easy maintenance and updates as needed.
Low-code/no-code interface: Kairon’s interface is designed to be easy for functional users, such as marketing teams or product management, to define how the digital assistant responds to user queries without needing extensive coding skills. Secure script injection: Kairon’s digital assistants can be easily deployed on websites and SAAS products through secure script injection, enabling organizations to offer better customer service and support.
Kairon Telemetry: Kairon’s telemetry feature monitors how users are interacting with the website/product where Kairon was injected and proactively intervenes if they are facing problems, improving the overall user experience. Chat client designer: Kairon’s chat client designer feature allows organizations to create customized chat clients for their digital assistants, which can enhance the user experience and help build brand loyalty.
Analytics module: Kairon’s analytics module provides insights into how users are interacting with the digital assistant, enabling organizations to optimize their performance and provide better service to customers. Robust integration suite: Kairon’s integration suite allows digital assistants to be served in an omni-channel, multi-lingual manner, improving accessibility and expanding the reach of the digital assistant.
Realtime struggle analytics: Kairon’s digital assistants use real-time struggle analytics to proactively intervene when users are facing friction on the product/website where Kairon has been injected, improving user satisfaction and reducing churn. This website can be found at Kairon and is hosted by NimbleWork Inc.
Who uses it ?
Kairon is built for two personas Teams and Individuals who want an easy no-coding interface to create, train, test and deploy digital assistants . One can directly access these features from our hosted website. Teams who want to host the chatbot trainer in-house. They can build it using docker compose. Our teams current focus within NLP is Knowledge Graphs – Do let us know if you are interested.
At this juncture it layers on top of Rasa Open Source
Kairon only requires a recent version of Docker and Docker Compose.
Please do the below changes in docker/docker-compose.yml
-
set env variable server to public IP of the machine where trainer api docker container is running for example: http://localhost:81
-
Optional, if you want to have google analytics enabled then uncomment trackingid and set google analytics tracking id
-
set env variable SECRET_KEY to some random key.
use below command for generating random secret key
openssl rand -hex 32
-
run the command.
cd kairon/docker docker-compose up -d
-
Open http://localhost/ in browser.
-
To Test use username: [email protected] and password: Changeit@123 to try with demo user
-
Kairon requires python 3.10 and mongo 4.0+
-
Then clone this repo
git clone https://github.com/digiteinfotech/kairon.git cd kairon/
-
For creating Virtual environment, please follow the link
-
For installing dependencies
Windows
setup.bat
No Matching distribution found tensorflow-text - remove the dependency from requirements.txt file, as window version is not available #44
Linux
chmod 777 ./setup.sh sh ./setup.sh
-
For starting augmentation services run
python -m uvicorn augmentation.paraphrase.server:app --host 0.0.0.0
-
For starting trainer-api services run
python -m uvicorn kairon.api.app.main:app --host 0.0.0.0 --port 8080
The email.yaml file can be used to configure the process for account confirmation through a verification link sent to the user's mail id. It consists of the following parameters:
-
enable -
set value to True for enabling email verification, and False to disable.
You can also use the environment variable EMAIL_ENABLE to change the values.
-
url -
this url, along with a unique token is sent to the user's mail id for account verification as well as for password reset tasks.
You can also use the environment variable APP_URL to change the values.
-
email -
the mail id of the account which sends the confirmation mail.
You can also use the environment variable EMAIL_SENDER_EMAIL to change the values.
-
password -
the password of the account which sends the confirmation mail.
You can also use the environment variable EMAIL_SENDER_PASSWORD to change the values.
-
port -
the port that is used to send the mail [For ex. "587"].
You can also use the environment variable EMAIL_SENDER_PORT to change the values.
-
service -
the mail service that is used to send the confirmation mail [For ex. "gmail"].
You can also use the environment variable EMAIL_SENDER_SERVICE to change the values.
-
tls -
set value to True for enabling transport layer security, and False to disable.
You can also use the environment variable EMAIL_SENDER_TLS to change the values.
-
userid -
the user ID for the mail service if you're using a custom service for sending mails.
You can also use the environment variable EMAIL_SENDER_USERID to change the values.
-
confirmation_subject -
the subject of the mail to be sent for confirmation.
You can also use the environment variable EMAIL_TEMPLATES_CONFIRMATION_SUBJECT to change the subject.
-
confirmation_body -
the body of the mail to be sent for confirmation.
You can also use the environment variable EMAIL_TEMPLATES_CONFIRMATION_BODY to change the body of the mail.
-
confirmed_subject -
the subject of the mail to be sent after confirmation.
You can also use the environment variable EMAIL_TEMPLATES_CONFIRMED_SUBJECT to change the subject.
-
confirmed_body -
the body of the mail to be sent after confirmation.
You can also use the environment variable EMAIL_TEMPLATES_CONFIRMED_BODY to change the body of the mail.
-
password_reset_subject -
the subject of the mail to be sent for password reset.
You can also use the environment variable EMAIL_TEMPLATES_PASSWORD_RESET_SUBJECT to change the subject.
-
password_reset_body -
the body of the mail to be sent for password reset.
You can also use the environment variable EMAIL_TEMPLATES_PASSWORD_RESET_BODY to change the body of the mail.
-
password_changed_subject -
the subject of the mail to be sent after changing the password.
You can also use the environment variable EMAIL_TEMPLATES_PASSWORD_CHANGED_SUBJECT to change the subject.
-
password_changed_body -
the body of the mail to be sent after changing the password.
You can also use the environment variable EMAIL_TEMPLATES_PASSWORD_CHANGED_BODY to change the body of the mail.
Documentation for all APIs for Kairon are still being fleshed out. A intermediary version of the documentation is available here. Documentation
We ❤️ contributions of all size and sorts. If you find a typo, if you want to improve a section of the documentation or if you want to help with a bug or a feature, here are the steps:
-
Fork the repo and create a new branch, say rasa-dx-issue1
-
Fix/improve the codebase
-
write test cases and documentation for code'
-
run test cases.
python -m pytest
- reformat code using black
python -m black bot_trainer
-
Commit the changes, with proper comments about the fix.
-
Make a pull request. It can simply be one of your commit messages.
-
Submit your pull request and wait for all checks passed.
-
Request reviews from one of the developers from our core team.
-
Get a 👍 and PR gets merged.
- Rasa - The bot framework used
- PiPy - Dependency Management
- Mongo - DB
- MongoEngine - ORM
- FastApi - Rest Api
- Uvicorn - ASGI Server
- Spacy - NLP
- Pytest - Testing
- MongoMock - Mocking DB
- Response - Mocking HTTP requests
- Black - Code Reformatting
- NLP AUG - Augmentation
The repository is being maintained and supported by NimbleWork Inc.
- NimbleWork.Inc - NimbleWork
- Fahad Ali Shaikh
- Deepak Naik
- Nirmal Parwate
- Adurthi Ashwin Swarup
- Udit Pandey
- Nupur_Khare
- [Rohan Patwardhan]
- [Hitesh Ghuge]
- [Sushant Patade]
- [Mitesh Gupta]
See also the list of contributors who participated in this project.
Licensed under the Apache License, Version 2.0. Copy of the license
A list of the Licenses of the dependencies of the project can be found at the Link
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for kairon
Similar Open Source Tools
kairon
Kairon is an open-source conversational digital transformation platform that helps build LLM-based digital assistants at scale. It provides a no-coding web interface for adapting, training, testing, and maintaining AI assistants. Kairon focuses on pre-processing data for chatbots, including question augmentation, knowledge graph generation, and post-processing metrics. It offers end-to-end lifecycle management, low-code/no-code interface, secure script injection, telemetry monitoring, chat client designer, analytics module, and real-time struggle analytics. Kairon is suitable for teams and individuals looking for an easy interface to create, train, test, and deploy digital assistants.
deepdoctection
**deep** doctection is a Python library that orchestrates document extraction and document layout analysis tasks using deep learning models. It does not implement models but enables you to build pipelines using highly acknowledged libraries for object detection, OCR and selected NLP tasks and provides an integrated framework for fine-tuning, evaluating and running models. For more specific text processing tasks use one of the many other great NLP libraries. **deep** doctection focuses on applications and is made for those who want to solve real world problems related to document extraction from PDFs or scans in various image formats. **deep** doctection provides model wrappers of supported libraries for various tasks to be integrated into pipelines. Its core function does not depend on any specific deep learning library. Selected models for the following tasks are currently supported: * Document layout analysis including table recognition in Tensorflow with **Tensorpack**, or PyTorch with **Detectron2**, * OCR with support of **Tesseract**, **DocTr** (Tensorflow and PyTorch implementations available) and a wrapper to an API for a commercial solution, * Text mining for native PDFs with **pdfplumber**, * Language detection with **fastText**, * Deskewing and rotating images with **jdeskew**. * Document and token classification with all LayoutLM models provided by the **Transformer library**. (Yes, you can use any LayoutLM-model with any of the provided OCR-or pdfplumber tools straight away!). * Table detection and table structure recognition with **table-transformer**. * There is a small dataset for token classification available and a lot of new tutorials to show, how to train and evaluate this dataset using LayoutLMv1, LayoutLMv2, LayoutXLM and LayoutLMv3. * Comprehensive configuration of **analyzer** like choosing different models, output parsing, OCR selection. Check this notebook or the docs for more infos. * Document layout analysis and table recognition now runs with **Torchscript** (CPU) as well and **Detectron2** is not required anymore for basic inference. * [**new**] More angle predictors for determining the rotation of a document based on **Tesseract** and **DocTr** (not contained in the built-in Analyzer). * [**new**] Token classification with **LiLT** via **transformers**. We have added a model wrapper for token classification with LiLT and added a some LiLT models to the model catalog that seem to look promising, especially if you want to train a model on non-english data. The training script for LayoutLM can be used for LiLT as well and we will be providing a notebook on how to train a model on a custom dataset soon. **deep** doctection provides on top of that methods for pre-processing inputs to models like cropping or resizing and to post-process results, like validating duplicate outputs, relating words to detected layout segments or ordering words into contiguous text. You will get an output in JSON format that you can customize even further by yourself. Have a look at the **introduction notebook** in the notebook repo for an easy start. Check the **release notes** for recent updates. **deep** doctection or its support libraries provide pre-trained models that are in most of the cases available at the **Hugging Face Model Hub** or that will be automatically downloaded once requested. For instance, you can find pre-trained object detection models from the Tensorpack or Detectron2 framework for coarse layout analysis, table cell detection and table recognition. Training is a substantial part to get pipelines ready on some specific domain, let it be document layout analysis, document classification or NER. **deep** doctection provides training scripts for models that are based on trainers developed from the library that hosts the model code. Moreover, **deep** doctection hosts code to some well established datasets like **Publaynet** that makes it easy to experiment. It also contains mappings from widely used data formats like COCO and it has a dataset framework (akin to **datasets** so that setting up training on a custom dataset becomes very easy. **This notebook** shows you how to do this. **deep** doctection comes equipped with a framework that allows you to evaluate predictions of a single or multiple models in a pipeline against some ground truth. Check again **here** how it is done. Having set up a pipeline it takes you a few lines of code to instantiate the pipeline and after a for loop all pages will be processed through the pipeline.
agent-zero
Agent Zero is a personal and organic AI framework designed to be dynamic, organically growing, and learning as you use it. It is fully transparent, readable, comprehensible, customizable, and interactive. The framework uses the computer as a tool to accomplish tasks, with no single-purpose tools pre-programmed. It emphasizes multi-agent cooperation, complete customization, and extensibility. Communication is key in this framework, allowing users to give proper system prompts and instructions to achieve desired outcomes. Agent Zero is capable of dangerous actions and should be run in an isolated environment. The framework is prompt-based, highly customizable, and requires a specific environment to run effectively.
local_multimodal_ai_chat
Local Multimodal AI Chat is a hands-on project that teaches you how to build a multimodal chat application. It integrates different AI models to handle audio, images, and PDFs in a single chat interface. This project is perfect for anyone interested in AI and software development who wants to gain practical experience with these technologies.
AutoGPT
AutoGPT is a revolutionary tool that empowers everyone to harness the power of AI. With AutoGPT, you can effortlessly build, test, and delegate tasks to AI agents, unlocking a world of possibilities. Our mission is to provide the tools you need to focus on what truly matters: innovation and creativity.
ml-engineering
This repository provides a comprehensive collection of methodologies, tools, and step-by-step instructions for successful training of large language models (LLMs) and multi-modal models. It is a technical resource suitable for LLM/VLM training engineers and operators, containing numerous scripts and copy-n-paste commands to facilitate quick problem-solving. The repository is an ongoing compilation of the author's experiences training BLOOM-176B and IDEFICS-80B models, and currently focuses on the development and training of Retrieval Augmented Generation (RAG) models at Contextual.AI. The content is organized into six parts: Insights, Hardware, Orchestration, Training, Development, and Miscellaneous. It includes key comparison tables for high-end accelerators and networks, as well as shortcuts to frequently needed tools and guides. The repository is open to contributions and discussions, and is licensed under Attribution-ShareAlike 4.0 International.
obsidian-Smart2Brain
Your Smart Second Brain is a free and open-source Obsidian plugin that serves as your personal assistant, powered by large language models like ChatGPT or Llama2. It can directly access and process your notes, eliminating the need for manual prompt editing, and it can operate completely offline, ensuring your data remains private and secure.
nextpy
Nextpy is a cutting-edge software development framework optimized for AI-based code generation. It provides guardrails for defining AI system boundaries, structured outputs for prompt engineering, a powerful prompt engine for efficient processing, better AI generations with precise output control, modularity for multiplatform and extensible usage, developer-first approach for transferable knowledge, and containerized & scalable deployment options. It offers 4-10x faster performance compared to Streamlit apps, with a focus on cooperation within the open-source community and integration of key components from various projects.
Local-Multimodal-AI-Chat
Local Multimodal AI Chat is a multimodal chat application that integrates various AI models to manage audio, images, and PDFs seamlessly within a single interface. It offers local model processing with Ollama for data privacy, integration with OpenAI API for broader AI capabilities, audio chatting with Whisper AI for accurate voice interpretation, and PDF chatting with Chroma DB for efficient PDF interactions. The application is designed for AI enthusiasts and developers seeking a comprehensive solution for multimodal AI technologies.
copilot
OpenCopilot is a tool that allows users to create their own AI copilot for their products. It integrates with APIs to execute calls as needed, using LLMs to determine the appropriate endpoint and payload. Users can define API actions, validate schemas, and integrate a user-friendly chat bubble into their SaaS app. The tool is capable of calling APIs, transforming responses, and populating request fields based on context. It is not suitable for handling large APIs without JSON transformers. Users can teach the copilot via flows and embed it in their app with minimal code.
kitops
KitOps is a packaging and versioning system for AI/ML projects that uses open standards so it works with the AI/ML, development, and DevOps tools you are already using. KitOps simplifies the handoffs between data scientists, application developers, and SREs working with LLMs and other AI/ML models. KitOps' ModelKits are a standards-based package for models, their dependencies, configurations, and codebases. ModelKits are portable, reproducible, and work with the tools you already use.
burpference
Burpference is an open-source extension designed to capture in-scope HTTP requests and responses from Burp's proxy history and send them to a remote LLM API in JSON format. It automates response capture, integrates with APIs, optimizes resource usage, provides color-coded findings visualization, offers comprehensive logging, supports native Burp reporting, and allows flexible configuration. Users can customize system prompts, API keys, and remote hosts, and host models locally to prevent high inference costs. The tool is ideal for offensive web application engagements to surface findings and vulnerabilities.
aide
Aide is an Open Source AI-native code editor that combines the powerful features of VS Code with advanced AI capabilities. It provides a combined chat + edit flow, proactive agents for fixing errors, inline editing widget, intelligent code completion, and AST navigation. Aide is designed to be an intelligent coding companion, helping users write better code faster while maintaining control over the development process.
DataEngineeringPilipinas
DataEngineeringPilipinas is a repository dedicated to data engineering resources in the Philippines. It serves as a platform for data engineering professionals to contribute and access high-quality content related to data engineering. The repository provides guidelines for contributing, including forking the repository, making changes, and submitting contributions. It emphasizes the importance of quality, relevance, and respect in the contributions made to the project. By following the guidelines and contributing to the repository, users can help build a valuable resource for the data engineering community in the Philippines and beyond.
OpenCopilot
OpenCopilot allows you to have your own product's AI copilot. It integrates with your underlying APIs and can execute API calls whenever needed. It uses LLMs to determine if the user's request requires calling an API endpoint. Then, it decides which endpoint to call and passes the appropriate payload based on the given API definition.
chatty
Chatty is a private AI tool that runs large language models natively and privately in the browser, ensuring in-browser privacy and offline usability. It supports chat history management, open-source models like Gemma and Llama2, responsive design, intuitive UI, markdown & code highlight, chat with files locally, custom memory support, export chat messages, voice input support, response regeneration, and light & dark mode. It aims to bring popular AI interfaces like ChatGPT and Gemini into an in-browser experience.
For similar tasks
kairon
Kairon is an open-source conversational digital transformation platform that helps build LLM-based digital assistants at scale. It provides a no-coding web interface for adapting, training, testing, and maintaining AI assistants. Kairon focuses on pre-processing data for chatbots, including question augmentation, knowledge graph generation, and post-processing metrics. It offers end-to-end lifecycle management, low-code/no-code interface, secure script injection, telemetry monitoring, chat client designer, analytics module, and real-time struggle analytics. Kairon is suitable for teams and individuals looking for an easy interface to create, train, test, and deploy digital assistants.
L3AGI
L3AGI is an open-source tool that enables AI Assistants to collaborate together as effectively as human teams. It provides a robust set of functionalities that empower users to design, supervise, and execute both autonomous AI Assistants and Teams of Assistants. Key features include the ability to create and manage Teams of AI Assistants, design and oversee standalone AI Assistants, equip AI Assistants with the ability to retain and recall information, connect AI Assistants to an array of data sources for efficient information retrieval and processing, and employ curated sets of tools for specific tasks. L3AGI also offers a user-friendly interface, APIs for integration with other systems, and a vibrant community for support and collaboration.
SiLLM
SiLLM is a toolkit that simplifies the process of training and running Large Language Models (LLMs) on Apple Silicon by leveraging the MLX framework. It provides features such as LLM loading, LoRA training, DPO training, a web app for a seamless chat experience, an API server with OpenAI compatible chat endpoints, and command-line interface (CLI) scripts for chat, server, LoRA fine-tuning, DPO fine-tuning, conversion, and quantization.
chatgpt-exporter
A script to export the chat history of ChatGPT. Supports exporting to text, HTML, Markdown, PNG, and JSON formats. Also allows for exporting multiple conversations at once.
For similar jobs
kairon
Kairon is an open-source conversational digital transformation platform that helps build LLM-based digital assistants at scale. It provides a no-coding web interface for adapting, training, testing, and maintaining AI assistants. Kairon focuses on pre-processing data for chatbots, including question augmentation, knowledge graph generation, and post-processing metrics. It offers end-to-end lifecycle management, low-code/no-code interface, secure script injection, telemetry monitoring, chat client designer, analytics module, and real-time struggle analytics. Kairon is suitable for teams and individuals looking for an easy interface to create, train, test, and deploy digital assistants.
ChatFAQ
ChatFAQ is an open-source comprehensive platform for creating a wide variety of chatbots: generic ones, business-trained, or even capable of redirecting requests to human operators. It includes a specialized NLP/NLG engine based on a RAG architecture and customized chat widgets, ensuring a tailored experience for users and avoiding vendor lock-in.
agentcloud
AgentCloud is an open-source platform that enables companies to build and deploy private LLM chat apps, empowering teams to securely interact with their data. It comprises three main components: Agent Backend, Webapp, and Vector Proxy. To run this project locally, clone the repository, install Docker, and start the services. The project is licensed under the GNU Affero General Public License, version 3 only. Contributions and feedback are welcome from the community.
anything-llm
AnythingLLM is a full-stack application that enables you to turn any document, resource, or piece of content into context that any LLM can use as references during chatting. This application allows you to pick and choose which LLM or Vector Database you want to use as well as supporting multi-user management and permissions.
ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.
Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.
glide
Glide is a cloud-native LLM gateway that provides a unified REST API for accessing various large language models (LLMs) from different providers. It handles LLMOps tasks such as model failover, caching, key management, and more, making it easy to integrate LLMs into applications. Glide supports popular LLM providers like OpenAI, Anthropic, Azure OpenAI, AWS Bedrock (Titan), Cohere, Google Gemini, OctoML, and Ollama. It offers high availability, performance, and observability, and provides SDKs for Python and NodeJS to simplify integration.
chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.