
ramalama
The goal of RamaLama is to make working with AI boring.
Stars: 1390

The Ramalama project simplifies working with AI by utilizing OCI containers. It automatically detects GPU support, pulls necessary software in a container, and runs AI models. Users can list, pull, run, and serve models easily. The tool aims to support various GPUs and platforms in the future, making AI setup hassle-free.
README:
The RamaLama project's goal is to make working with AI boring through the use of OCI containers.
RamaLama tool facilitates local management and serving of AI Models.
On first run RamaLama inspects your system for GPU support, falling back to CPU support if no GPUs are present.
RamaLama uses container engines like Podman or Docker to pull the appropriate OCI image with all of the software necessary to run an AI Model for your systems setup.
Running in containers eliminates the need for users to configure the host system for AI. After the initialization, RamaLama runs the AI Models within a container based on the OCI image.
RamaLama then pulls AI Models from model registries. Starting a chatbot or a rest API service from a simple single command. Models are treated similarly to how Podman and Docker treat container images.
When both Podman and Docker are installed, RamaLama defaults to Podman, The RAMALAMA_CONTAINER_ENGINE=docker
environment variable can override this behaviour. When neither are installed RamaLama will attempt to run the model with software on the local system.
For blogs, release announcements and more, please checkout the https://ramalama.ai website!
Because RamaLama defaults to running AI models inside of rootless containers using Podman or Docker. These containers isolate the AI models from information on the underlying host. With RamaLama containers, the AI model is mounted as a volume into the container in read/only mode. This results in the process running the model, llama.cpp or vLLM, being isolated from the host. In addition, since ramalama run
uses the --network=none option, the container can not reach the network and leak any information out of the system. Finally, containers are run with --rm options which means that any content written during the running of the container is wiped out when the application exits.
✅ Container Isolation – AI models run within isolated containers, preventing direct access to the host system.
✅ Read-Only Volume Mounts – The AI model is mounted in read-only mode, meaning that processes inside the container cannot modify host files.
✅ No Network Access – ramalama run is executed with --network=none, meaning the model has no outbound connectivity for which information can be leaked.
✅ Auto-Cleanup – Containers run with --rm, wiping out any temporary data once the session ends.
✅ Drop All Linux Capabilities – No access to Linux capabilities to attack the underlying host.
✅ No New Privileges – Linux Kernel feature which disables container processes from gaining additional privileges.
RamaLama supports multiple AI model registries types called transports. Supported transports:
Transports | Web Site |
---|---|
HuggingFace | huggingface.co |
Ollama | ollama.com |
OCI Container Registries | opencontainers.org |
Examples: quay.io , Docker Hub , Pulp , and Artifactory
|
RamaLama uses the Ollama registry transport by default. Use the RAMALAMA_TRANSPORTS environment variable to modify the default. export RAMALAMA_TRANSPORT=huggingface
Changes RamaLama to use huggingface transport.
Individual model transports can be modifies when specifying a model via the huggingface://
, oci://
, or ollama://
prefix.
ramalama pull huggingface://afrideva/Tiny-Vicuna-1B-GGUF/tiny-vicuna-1b.q2_k.gguf
To make it easier for users, RamaLama uses shortname files, which container alias names for fully specified AI Models allowing users to specify the shorter names when referring to models. RamaLama reads shortnames.conf files if they exist . These files contain a list of name value pairs for specification of the model. The following table specifies the order which RamaLama reads the files . Any duplicate names that exist override previously defined shortnames.
Shortnames type | Path |
---|---|
Distribution | /usr/share/ramalama/shortnames.conf |
Administrators | /etc/ramamala/shortnames.conf |
Users | $HOME/.config/ramalama/shortnames.conf |
$ cat /usr/share/ramalama/shortnames.conf
[shortnames]
"tiny" = "ollama://tinyllama"
"granite" = "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf"
"granite:7b" = "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf"
"ibm/granite" = "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf"
"merlinite" = "huggingface://instructlab/merlinite-7b-lab-GGUF/merlinite-7b-lab-Q4_K_M.gguf"
"merlinite:7b" = "huggingface://instructlab/merlinite-7b-lab-GGUF/merlinite-7b-lab-Q4_K_M.gguf"
...
RamaLama is available in Fedora 40 and later. To install it, run:
sudo dnf install python3-ramalama
RamaLama is available via PyPi https://pypi.org/project/ramalama
pip install ramalama
[!TIP] If you are a macOS user, this is the preferred method.
Install RamaLama by running this one-liner:
curl -fsSL https://raw.githubusercontent.com/containers/ramalama/s/install.sh | bash
Hardware | Enabled |
---|---|
CPU | ✅ |
Apple Silicon GPU (Linux / Asahi) | ✅ |
Apple Silicon GPU (macOS) | ✅ |
Apple Silicon GPU (podman-machine) | ✅ |
Nvidia GPU (cuda) | ✅ |
AMD GPU (rocm) | ✅ |
Ascend NPU (Linux) | ✅ |
Intel ARC GPUs (Linux) | ✅ |
Note: The following Intel GPUs are auto-detected by Ramalama:
GPU ID | Description |
---|---|
0xe20b |
Intel® Arc™ B580 Graphics |
0xe20c |
Intel® Arc™ B570 Graphics |
0x7d51 |
Intel® Graphics - Arrow Lake-H |
0x7dd5 |
Intel® Graphics - Meteor Lake |
0x7d55 |
Intel® Arc™ Graphics - Meteor Lake |
See https://dgpu-docs.intel.com/devices/hardware-table.html for more information.
Command | Description |
---|---|
ramalama(1) | primary RamaLama man page |
ramalama-bench(1) | benchmark specified AI Model |
ramalama-containers(1) | list all RamaLama containers |
ramalama-convert(1) | convert AI Model from local storage to OCI Image |
ramalama-info(1) | display RamaLama configuration information |
ramalama-inspect(1) | inspect the specified AI Model |
ramalama-list(1) | list all downloaded AI Models |
ramalama-login(1) | login to remote registry |
ramalama-logout(1) | logout from remote registry |
ramalama-perplexity(1) | calculate perplexity for specified AI Model |
ramalama-pull(1) | pull AI Model from Model registry to local storage |
ramalama-push(1) | push AI Model from local storage to remote registry |
ramalama-rag(1) | generate and convert Retrieval Augmented Generation (RAG) data from provided documents into an OCI Image |
ramalama-rm(1) | remove AI Model from local storage |
ramalama-run(1) | run specified AI Model as a chatbot |
ramalama-serve(1) | serve REST API on specified AI Model |
ramalama-stop(1) | stop named container that is running AI Model |
ramalama-version(1) | display version of AI Model |
You can run
a chatbot on a model using the run
command. By default, it pulls from the Ollama registry.
Note: RamaLama will inspect your machine for native GPU support and then will use a container engine like Podman to pull an OCI container image with the appropriate code and libraries to run the AI Model. This can take a long time to setup, but only on the first run.
$ ramalama run instructlab/merlinite-7b-lab
Copying blob 5448ec8c0696 [--------------------------------------] 0.0b / 63.6MiB (skipped: 0.0b = 0.00%)
Copying blob cbd7e392a514 [--------------------------------------] 0.0b / 65.3MiB (skipped: 0.0b = 0.00%)
Copying blob 5d6c72bcd967 done 208.5MiB / 208.5MiB (skipped: 0.0b = 0.00%)
Copying blob 9ccfa45da380 [--------------------------------------] 0.0b / 7.6MiB (skipped: 0.0b = 0.00%)
Copying blob 4472627772b1 [--------------------------------------] 0.0b / 120.0b (skipped: 0.0b = 0.00%)
>
After the initial container image has been downloaded, you can interact with different models, using the container image.
$ ramalama run granite3-moe
> Write a hello world application in python
print("Hello World")
In a different terminal window see the running podman container.
$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
91df4a39a360 quay.io/ramalama/ramalama:latest /home/dwalsh/rama... 4 minutes ago Up 4 minutes gifted_volhard
You can list
all models pulled into local storage.
$ ramalama list
NAME MODIFIED SIZE
ollama://smollm:135m 16 hours ago 5.5M
huggingface://afrideva/Tiny-Vicuna-1B-GGUF/tiny-vicuna-1b.q2_k.gguf 14 hours ago 460M
ollama://moondream:latest 6 days ago 791M
ollama://phi4:latest 6 days ago 8.43 GB
ollama://tinyllama:latest 1 week ago 608.16 MB
ollama://granite3-moe:3b 1 week ago 1.92 GB
ollama://granite3-moe:latest 3 months ago 1.92 GB
ollama://llama3.1:8b 2 months ago 4.34 GB
ollama://llama3.1:latest 2 months ago 4.34 GB
You can pull
a model using the pull
command. By default, it pulls from the Ollama registry.
$ ramalama pull granite3-moe
31% |████████ | 250.11 MB/ 783.77 MB 36.95 MB/s 14s
You can serve
multiple models using the serve
command. By default, it pulls from the Ollama registry.
$ ramalama serve --name mylama llama3
You can stop a running model if it is running in a container.
$ ramalama stop mylama
To use a UI, run a ramalama serve
command, then connect via your browser at:
127.0.0.1:< port >
The default serving port will be 8080 if available, otherwise a free random port in the range 8081-8090. If you wish, you can specify a port to use with --port/-p
.
+---------------------------+
| |
| ramalama run granite3-moe |
| |
+-------+-------------------+
|
|
| +------------------+ +------------------+
| | Pull inferencing | | Pull model layer |
+-----------| runtime (cuda) |---------->| granite3-moe |
+------------------+ +------------------+
| Repo options: |
+-+-------+------+-+
| | |
v v v
+---------+ +------+ +----------+
| Hugging | | OCI | | Ollama |
| Face | | | | Registry |
+-------+-+ +---+--+ +-+--------+
| | |
v v v
+------------------+
| Start with |
| cuda runtime |
| and |
| granite3-moe |
+------------------+
Regard this alpha, everything is under development, so expect breaking changes, luckily it's easy to reset everything and re-install:
rm -rf /var/lib/ramalama # only required if running as root user
rm -rf $HOME/.local/share/ramalama
and install again.
This project wouldn't be possible without the help of other projects like:
llama.cpp
whisper.cpp
vllm
podman
huggingface
so if you like this tool, give some of these repos a ⭐, and hey, give us a ⭐ too while you are at it.
For general questions and discussion, please use RamaLama's
For discussions around issues/bugs and features, you can use the GitHub Issues and PRs tracking system.
Open to contributors
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for ramalama
Similar Open Source Tools

ramalama
The Ramalama project simplifies working with AI by utilizing OCI containers. It automatically detects GPU support, pulls necessary software in a container, and runs AI models. Users can list, pull, run, and serve models easily. The tool aims to support various GPUs and platforms in the future, making AI setup hassle-free.

TinyLLM
TinyLLM is a project that helps build a small locally hosted language model with a web interface using consumer-grade hardware. It supports multiple language models, builds a local OpenAI API web service, and serves a Chatbot web interface with customizable prompts. The project requires specific hardware and software configurations for optimal performance. Users can run a local language model using inference servers like vLLM, llama-cpp-python, and Ollama. The Chatbot feature allows users to interact with the language model through a web-based interface, supporting features like summarizing websites, displaying news headlines, stock prices, weather conditions, and using vector databases for queries.

AQLM
AQLM is the official PyTorch implementation for Extreme Compression of Large Language Models via Additive Quantization. It includes prequantized AQLM models without PV-Tuning and PV-Tuned models for LLaMA, Mistral, and Mixtral families. The repository provides inference examples, model details, and quantization setups. Users can run prequantized models using Google Colab examples, work with different model families, and install the necessary inference library. The repository also offers detailed instructions for quantization, fine-tuning, and model evaluation. AQLM quantization involves calibrating models for compression, and users can improve model accuracy through finetuning. Additionally, the repository includes information on preparing models for inference and contributing guidelines.

RobustVLM
This repository contains code for the paper 'Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language Models'. It focuses on fine-tuning CLIP in an unsupervised manner to enhance its robustness against visual adversarial attacks. By replacing the vision encoder of large vision-language models with the fine-tuned CLIP models, it achieves state-of-the-art adversarial robustness on various vision-language tasks. The repository provides adversarially fine-tuned ViT-L/14 CLIP models and offers insights into zero-shot classification settings and clean accuracy improvements.

floneum
Floneum is a graph editor that makes it easy to develop your own AI workflows. It uses large language models (LLMs) to run AI models locally, without any external dependencies or even a GPU. This makes it easy to use LLMs with your own data, without worrying about privacy. Floneum also has a plugin system that allows you to improve the performance of LLMs and make them work better for your specific use case. Plugins can be used in any language that supports web assembly, and they can control the output of LLMs with a process similar to JSONformer or guidance.

GenAIComps
GenAIComps is an initiative aimed at building enterprise-grade Generative AI applications using a microservice architecture. It simplifies the scaling and deployment process for production, abstracting away infrastructure complexities. GenAIComps provides a suite of containerized microservices that can be assembled into a mega-service tailored for real-world Enterprise AI applications. The modular approach of microservices allows for independent development, deployment, and scaling of individual components, promoting modularity, flexibility, and scalability. The mega-service orchestrates multiple microservices to deliver comprehensive solutions, encapsulating complex business logic and workflow orchestration. The gateway serves as the interface for users to access the mega-service, providing customized access based on user requirements.

pipeline
Pipeline is a Python library designed for constructing computational flows for AI/ML models. It supports both development and production environments, offering capabilities for inference, training, and finetuning. The library serves as an interface to Mystic, enabling the execution of pipelines at scale and on enterprise GPUs. Users can also utilize this SDK with Pipeline Core on a private hosted cluster. The syntax for defining AI/ML pipelines is reminiscent of sessions in Tensorflow v1 and Flows in Prefect.

airdcpp-windows
AirDC++ for Windows 10/11 is a file sharing client with a focus on ease of use and performance. It is designed to provide a seamless experience for users looking to share and download files over the internet. The tool is built using Visual Studio 2022 and offers a range of features to enhance the file sharing process. Users can easily clone the repository to access the latest version and contribute to the development of the tool.

outspeed
Outspeed is a PyTorch-inspired SDK for building real-time AI applications on voice and video input. It offers low-latency processing of streaming audio and video, an intuitive API familiar to PyTorch users, flexible integration of custom AI models, and tools for data preprocessing and model deployment. Ideal for developing voice assistants, video analytics, and other real-time AI applications processing audio-visual data.

star-vector
StarVector is a multimodal vision-language model for Scalable Vector Graphics (SVG) generation. It can be used to perform image2SVG and text2SVG generation. StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. It achieves state-of-the-art performance in producing compact and semantically rich SVGs. The tool provides Hugging Face model checkpoints for image2SVG vectorization, with models like StarVector-8B and StarVector-1B. It also offers datasets like SVG-Stack, SVG-Fonts, SVG-Icons, SVG-Emoji, and SVG-Diagrams for evaluation. StarVector can be trained using Deepspeed or FSDP for tasks like Image2SVG and Text2SVG generation. The tool provides a demo with options for HuggingFace generation or VLLM backend for faster generation speed.

llm-graph-builder
Knowledge Graph Builder App is a tool designed to convert PDF documents into a structured knowledge graph stored in Neo4j. It utilizes OpenAI's GPT/Diffbot LLM to extract nodes, relationships, and properties from PDF text content. Users can upload files from local machine or S3 bucket, choose LLM model, and create a knowledge graph. The app integrates with Neo4j for easy visualization and querying of extracted information.

last_layer
last_layer is a security library designed to protect LLM applications from prompt injection attacks, jailbreaks, and exploits. It acts as a robust filtering layer to scrutinize prompts before they are processed by LLMs, ensuring that only safe and appropriate content is allowed through. The tool offers ultra-fast scanning with low latency, privacy-focused operation without tracking or network calls, compatibility with serverless platforms, advanced threat detection mechanisms, and regular updates to adapt to evolving security challenges. It significantly reduces the risk of prompt-based attacks and exploits but cannot guarantee complete protection against all possible threats.

cambrian
Cambrian-1 is a fully open project focused on exploring multimodal Large Language Models (LLMs) with a vision-centric approach. It offers competitive performance across various benchmarks with models at different parameter levels. The project includes training configurations, model weights, instruction tuning data, and evaluation details. Users can interact with Cambrian-1 through a Gradio web interface for inference. The project is inspired by LLaVA and incorporates contributions from Vicuna, LLaMA, and Yi. Cambrian-1 is licensed under Apache 2.0 and utilizes datasets and checkpoints subject to their respective original licenses.

clearml-fractional-gpu
ClearML Fractional GPU is a tool designed to optimize GPU resource utilization by allowing multiple containers to run on the same GPU with driver-level memory limitation and compute time-slicing. It supports CUDA 11.x & CUDA 12.x, preventing greedy processes from grabbing the entire GPU memory. The tool offers options like Dynamic GPU Slicing, Container-based Memory Limits, and Kubernetes-based Static MIG Slicing to enhance hardware utilization and workload performance for AI development.

AiOS
AiOS is a tool for human pose and shape estimation, performing human localization and SMPL-X estimation in a progressive manner. It consists of body localization, body refinement, and whole-body refinement stages. Users can download datasets for evaluation, SMPL-X body models, and AiOS checkpoint. Installation involves creating a conda virtual environment, installing PyTorch, torchvision, Pytorch3D, MMCV, and other dependencies. Inference requires placing the video for inference and pretrained models in specific directories. Test results are provided for NMVE, NMJE, MVE, and MPJPE on datasets like BEDLAM and AGORA. Users can run scripts for AGORA validation, AGORA test leaderboard, and BEDLAM leaderboard. The tool acknowledges codes from MMHuman3D, ED-Pose, and SMPLer-X.

llama-gpt
LlamaGPT is a self-hosted, offline, ChatGPT-like chatbot, powered by Llama 2. It is 100% private, with no data leaving your device. It supports various models, including Nous Hermes Llama 2 7B/13B/70B Chat and Code Llama 7B/13B/34B Chat. You can install LlamaGPT on your umbrelOS home server, M1/M2 Mac, or anywhere else with Docker. It also provides an OpenAI-compatible API for easy integration. LlamaGPT is still under development, with plans to add more features such as custom model loading and model switching.
For similar tasks

ramalama
The Ramalama project simplifies working with AI by utilizing OCI containers. It automatically detects GPU support, pulls necessary software in a container, and runs AI models. Users can list, pull, run, and serve models easily. The tool aims to support various GPUs and platforms in the future, making AI setup hassle-free.

client-js
The Mistral JavaScript client is a library that allows you to interact with the Mistral AI API. With this client, you can perform various tasks such as listing models, chatting with streaming, chatting without streaming, and generating embeddings. To use the client, you can install it in your project using npm and then set up the client with your API key. Once the client is set up, you can use it to perform the desired tasks. For example, you can use the client to chat with a model by providing a list of messages. The client will then return the response from the model. You can also use the client to generate embeddings for a given input. The embeddings can then be used for various downstream tasks such as clustering or classification.

OllamaSharp
OllamaSharp is a .NET binding for the Ollama API, providing an intuitive API client to interact with Ollama. It offers support for all Ollama API endpoints, real-time streaming, progress reporting, and an API console for remote management. Users can easily set up the client, list models, pull models with progress feedback, stream completions, and build interactive chats. The project includes a demo console for exploring and managing the Ollama host.

client
Gemini API PHP Client is a library that allows you to interact with Google's generative AI models, such as Gemini Pro and Gemini Pro Vision. It provides functionalities for basic text generation, multimodal input, chat sessions, streaming responses, tokens counting, listing models, and advanced usages like safety settings and custom HTTP client usage. The library requires an API key to access Google's Gemini API and can be installed using Composer. It supports various features like generating content, starting chat sessions, embedding content, counting tokens, and listing available models.

jvm-openai
jvm-openai is a minimalistic unofficial OpenAI API client for the JVM, written in Java. It serves as a Java client for OpenAI API with a focus on simplicity and minimal dependencies. The tool provides support for various OpenAI APIs and endpoints, including Audio, Chat, Embeddings, Fine-tuning, Batch, Files, Uploads, Images, Models, Moderations, Assistants, Threads, Messages, Runs, Run Steps, Vector Stores, Vector Store Files, Vector Store File Batches, Invites, Users, Projects, Project Users, Project Service Accounts, Project API Keys, and Audit Logs. Users can easily integrate this tool into their Java projects to interact with OpenAI services efficiently.

ollama-r
The Ollama R library provides an easy way to integrate R with Ollama for running language models locally on your machine. It supports working with standard data structures for different LLMs, offers various output formats, and enables integration with other libraries/tools. The library uses the Ollama REST API and requires the Ollama app to be installed, with GPU support for accelerating LLM inference. It is inspired by Ollama Python and JavaScript libraries, making it familiar for users of those languages. The installation process involves downloading the Ollama app, installing the 'ollamar' package, and starting the local server. Example usage includes testing connection, downloading models, generating responses, and listing available models.

openai-scala-client
This is a no-nonsense async Scala client for OpenAI API supporting all the available endpoints and params including streaming, chat completion, vision, and voice routines. It provides a single service called OpenAIService that supports various calls such as Models, Completions, Chat Completions, Edits, Images, Embeddings, Batches, Audio, Files, Fine-tunes, Moderations, Assistants, Threads, Thread Messages, Runs, Run Steps, Vector Stores, Vector Store Files, and Vector Store File Batches. The library aims to be self-contained with minimal dependencies and supports API-compatible providers like Azure OpenAI, Azure AI, Anthropic, Google Vertex AI, Groq, Grok, Fireworks AI, OctoAI, TogetherAI, Cerebras, Mistral, Deepseek, Ollama, FastChat, and more.

ai-models
The `ai-models` command is a tool used to run AI-based weather forecasting models. It provides functionalities to install, run, and manage different AI models for weather forecasting. Users can easily install and run various models, customize model settings, download assets, and manage input data from different sources such as ECMWF, CDS, and GRIB files. The tool is designed to optimize performance by running on GPUs and provides options for better organization of assets and output files. It offers a range of command line options for users to interact with the models and customize their forecasting tasks.
For similar jobs

weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.

LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.

VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.

kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.

PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.

tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.

spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.

Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.