
Archon
Archon is an AI agent that is able to create other AI agents using an advanced agentic coding workflow and framework knowledge base to unlock a new frontier of automated agents.
Stars: 2454

Archon is an AI meta-agent designed to autonomously build, refine, and optimize other AI agents. It serves as a practical tool for developers and an educational framework showcasing the evolution of agentic systems. Through iterative development, Archon demonstrates the power of planning, feedback loops, and domain-specific knowledge in creating robust AI agents.
README:
[ V4 - Massive Streamlit UI Overhaul ] Comprehensive dashboard interface for managing Archon with Streamlit
🔄 IMPORTANT UPDATE (March 13th): The environment variables system has been completely overhauled to be more intuitive with separate sections for LLM and Embedding providers. You will need to reset your environment variables in the UI. The new system makes it much easier to switch between different providers and manage profiles as well!
Archon is the world's first "Agenteer", an AI agent designed to autonomously build, refine, and optimize other AI agents.
It serves both as a practical tool for developers and as an educational framework demonstrating the evolution of agentic systems. Archon will be developed in iterations, starting with just a simple Pydantic AI agent that can build other Pydantic AI agents, all the way to a full agentic workflow using LangGraph that can build other AI agents with any framework. Through its iterative development, Archon showcases the power of planning, feedback loops, and domain-specific knowledge in creating robust AI agents.
-
The current version of Archon is V4 as mentioned above - see V4 Documentation for details.
-
I just created the Archon community forum over in the oTTomator Think Tank! Please post any questions you have there!
-
GitHub Kanban board for feature implementation and bug squashing.
Archon demonstrates three key principles in modern AI development:
- Agentic Reasoning: Planning, iterative feedback, and self-evaluation overcome the limitations of purely reactive systems
- Domain Knowledge Integration: Seamless embedding of frameworks like Pydantic AI and LangGraph within autonomous workflows
- Scalable Architecture: Modular design supporting maintainability, cost optimization, and ethical AI practices
Since V4 is the current version of Archon, all the code for V4 is in both the main directory and archon/iterations/v4-streamlit-ui-overhaul
directory.
- Docker (optional but preferred)
- Python 3.11+
- Supabase account (for vector database)
- OpenAI/Anthropic/OpenRouter API key or Ollama for local LLMs (note that only OpenAI supports streaming in the Streamlit UI currently)
- Clone the repository:
git clone https://github.com/coleam00/archon.git
cd archon
- Run the Docker setup script:
# This will build both containers and start Archon
python run_docker.py
- Access the Streamlit UI at http://localhost:8501.
Note:
run_docker.py
will automatically:
- Build the MCP server container
- Build the main Archon container
- Run Archon with the appropriate port mappings
- Use environment variables from
.env
file if it exists
- Clone the repository:
git clone https://github.com/coleam00/archon.git
cd archon
- Install dependencies:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
- Start the Streamlit UI:
streamlit run streamlit_ui.py
- Access the Streamlit UI at http://localhost:8501.
After installation, follow the guided setup process in the Intro section of the Streamlit UI:
-
Environment: Configure your API keys and model settings - all stored in
workbench/env_vars.json
- Database: Set up your Supabase vector database
- Documentation: Crawl and index the Pydantic AI documentation
- Agent Service: Start the agent service for generating agents
- Chat: Interact with Archon to create AI agents
- MCP (optional): Configure integration with AI IDEs
The Streamlit interface will guide you through each step with clear instructions and interactive elements. There are a good amount of steps for the setup but it goes quick!
If you encounter any errors when using Archon, please first check the logs in the "Agent Service" tab.
Logs specifically for MCP are also logged to workbench/logs.txt
(file is automatically created) so please
check there. The goal is for you to have a clear error message before creating a bug here in the GitHub repo
- Basic RAG-powered agent using Pydantic AI
- Supabase vector database for documentation storage
- Simple code generation without validation
- Learn more about V1
- Multi-agent system with planning and execution separation
- Reasoning LLM (O3-mini/R1) for architecture planning
- LangGraph for workflow orchestration
- Support for local LLMs via Ollama
- Learn more about V2
- Integration with AI IDEs like Windsurf and Cursor
- Automated file creation and dependency management
- FastAPI service for agent generation
- Improved project structure and organization
- Learn more about V3
- Docker support
- Comprehensive Streamlit interface for managing all aspects of Archon
- Guided setup process with interactive tabs
- Environment variable management through the UI
- Database setup and documentation crawling simplified
- Agent service control and monitoring
- MCP configuration through the UI
- Learn more about V4
- V5: Multi-Agent Coding Workflow - Specialized agents for different parts of the agent creation process
- V6: Tool Library and Example Integration - Pre-built external tool and agent examples incorporation
- V7: LangGraph Documentation - Allow Archon to build Pydantic AI AND LangGraph agents
- V8: Self-Feedback Loop - Automated validation and error correction
- V9: Self Agent Execution - Testing and iterating on agents in an isolated environment
- V10: Multi-Framework Support - Framework-agnostic agent generation
- V11: Autonomous Framework Learning - Self-updating framework adapters
- V12: Advanced RAG Techniques - Enhanced retrieval and incorporation of framework documentation
- V13: MCP Agent Marketplace - Integrating Archon agents as MCP servers and publishing to marketplaces
- LangSmith
- MCP marketplace
- Other frameworks besides Pydantic AI
- Other vector databases besides Supabase
- Local AI package for the agent environment
-
streamlit_ui.py
: Comprehensive web interface for managing all aspects of Archon -
graph_service.py
: FastAPI service that handles the agentic workflow -
run_docker.py
: Script to build and run Archon Docker containers -
Dockerfile
: Container definition for the main Archon application
-
mcp/
: Model Context Protocol server implementation-
mcp_server.py
: MCP server script for AI IDE integration -
Dockerfile
: Container definition for the MCP server
-
-
archon/
: Core agent and workflow implementation-
archon_graph.py
: LangGraph workflow definition and agent coordination -
pydantic_ai_coder.py
: Main coding agent with RAG capabilities -
crawl_pydantic_ai_docs.py
: Documentation crawler and processor
-
-
utils/
: Utility functions and database setup-
utils.py
: Shared utility functions -
site_pages.sql
: Database setup commands
-
-
workbench/
: Created at runtime, files specific to your environment-
env_vars.json
: Environment variables defined in the UI are stored here (included in .gitignore, file is created automatically) -
logs.txt
: Low level logs for all Archon processes go here -
scope.md
: The detailed scope document created by the reasoner model at the start of each Archon execution
-
-
Docker Containers: Run Archon in isolated containers with all dependencies included
- Main container: Runs the Streamlit UI and graph service
- MCP container: Provides MCP server functionality for AI IDEs
- Local Python: Run directly on your system with a Python virtual environment
The Docker implementation consists of two containers:
-
Main Archon Container:
- Runs the Streamlit UI on port 8501
- Hosts the Graph Service on port 8100
- Built from the root Dockerfile
- Handles all agent functionality and user interactions
-
MCP Container:
- Implements the Model Context Protocol for AI IDE integration
- Built from the mcp/Dockerfile
- Communicates with the main container's Graph Service
- Provides a standardized interface for AI IDEs like Windsurf, Cursor, Cline, and Roo Code
When running with Docker, the run_docker.py
script automates building and starting both containers with the proper configuration.
The Supabase database uses the following schema:
CREATE TABLE site_pages (
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(),
url TEXT,
chunk_number INTEGER,
title TEXT,
summary TEXT,
content TEXT,
metadata JSONB,
embedding VECTOR(1536) -- Adjust dimensions as necessary (i.e. 768 for nomic-embed-text)
);
The Streamlit UI provides an interface to set up this database structure automatically.
We welcome contributions! Whether you're fixing bugs, adding features, or improving documentation, please feel free to submit a Pull Request.
For version-specific details:
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for Archon
Similar Open Source Tools

Archon
Archon is an AI meta-agent designed to autonomously build, refine, and optimize other AI agents. It serves as a practical tool for developers and an educational framework showcasing the evolution of agentic systems. Through iterative development, Archon demonstrates the power of planning, feedback loops, and domain-specific knowledge in creating robust AI agents.

langmanus
LangManus is a community-driven AI automation framework that combines language models with specialized tools for tasks like web search, crawling, and Python code execution. It implements a hierarchical multi-agent system with agents like Coordinator, Planner, Supervisor, Researcher, Coder, Browser, and Reporter. The framework supports LLM integration, search and retrieval tools, Python integration, workflow management, and visualization. LangManus aims to give back to the open-source community and welcomes contributions in various forms.

resume-job-matcher
Resume Job Matcher is a Python script that automates the process of matching resumes to a job description using AI. It leverages the Anthropic Claude API or OpenAI's GPT API to analyze resumes and provide a match score along with personalized email responses for candidates. The tool offers comprehensive resume processing, advanced AI-powered analysis, in-depth evaluation & scoring, comprehensive analytics & reporting, enhanced candidate profiling, and robust system management. Users can customize font presets, generate PDF versions of unified resumes, adjust logging level, change scoring model, modify AI provider, and adjust AI model. The final score for each resume is calculated based on AI-generated match score and resume quality score, ensuring content relevance and presentation quality are considered. Troubleshooting tips, best practices, contribution guidelines, and required Python packages are provided.

trip_planner_agent
VacAIgent is an AI tool that automates and enhances trip planning by leveraging the CrewAI framework. It integrates a user-friendly Streamlit interface for interactive travel planning. Users can input preferences and receive tailored travel plans with the help of autonomous AI agents. The tool allows for collaborative decision-making on cities and crafting complete itineraries based on specified preferences, all accessible via a streamlined Streamlit user interface. VacAIgent can be customized to use different AI models like GPT-3.5 or local models like Ollama for enhanced privacy and customization.

Auto-Analyst
Auto-Analyst is an AI-driven data analytics agentic system designed to simplify and enhance the data science process. By integrating various specialized AI agents, this tool aims to make complex data analysis tasks more accessible and efficient for data analysts and scientists. Auto-Analyst provides a streamlined approach to data preprocessing, statistical analysis, machine learning, and visualization, all within an interactive Streamlit interface. It offers plug and play Streamlit UI, agents with data science speciality, complete automation, LLM agnostic operation, and is built using lightweight frameworks.

gateway
CentralMind Gateway is an AI-first data gateway that securely connects any data source and automatically generates secure, LLM-optimized APIs. It filters out sensitive data, adds traceability, and optimizes for AI workloads. Suitable for companies deploying AI agents for customer support and analytics.

evolving-agents
A toolkit for agent autonomy, evolution, and governance enabling agents to learn from experience, collaborate, communicate, and build new tools within governance guardrails. It focuses on autonomous evolution, agent self-discovery, governance firmware, self-building systems, and agent-centric architecture. The toolkit leverages existing frameworks to enable agent autonomy and self-governance, moving towards truly autonomous AI systems.

aiaio
aiaio (AI-AI-O) is a lightweight, privacy-focused web UI for interacting with AI models. It supports both local and remote LLM deployments through OpenAI-compatible APIs. The tool provides features such as dark/light mode support, local SQLite database for conversation storage, file upload and processing, configurable model parameters through UI, privacy-focused design, responsive design for mobile/desktop, syntax highlighting for code blocks, real-time conversation updates, automatic conversation summarization, customizable system prompts, WebSocket support for real-time updates, Docker support for deployment, multiple API endpoint support, and multiple system prompt support. Users can configure model parameters and API settings through the UI, handle file uploads, manage conversations, and use keyboard shortcuts for efficient interaction. The tool uses SQLite for storage with tables for conversations, messages, attachments, and settings. Contributions to the project are welcome under the Apache License 2.0.

Director
Director is a framework to build video agents that can reason through complex video tasks like search, editing, compilation, generation, etc. It enables users to summarize videos, search for specific moments, create clips instantly, integrate GenAI projects and APIs, add overlays, generate thumbnails, and more. Built on VideoDB's 'video-as-data' infrastructure, Director is perfect for developers, creators, and teams looking to simplify media workflows and unlock new possibilities.

gitdiagram
GitDiagram is a tool that turns any GitHub repository into an interactive diagram for visualization in seconds. It offers instant visualization, interactivity, fast generation, customization, and API access. The tool utilizes a tech stack including Next.js, FastAPI, PostgreSQL, Claude 3.5 Sonnet, Vercel, EC2, GitHub Actions, PostHog, and Api-Analytics. Users can self-host the tool for local development and contribute to its development. GitDiagram is inspired by Gitingest and has future plans to use larger context models, allow user API key input, implement RAG with Mermaid.js docs, and include font-awesome icons in diagrams.

Vodalus-Expert-LLM-Forge
Vodalus Expert LLM Forge is a tool designed for crafting datasets and efficiently fine-tuning models using free open-source tools. It includes components for data generation, LLM interaction, RAG engine integration, model training, fine-tuning, and quantization. The tool is suitable for users at all levels and is accompanied by comprehensive documentation. Users can generate synthetic data, interact with LLMs, train models, and optimize performance for local execution. The tool provides detailed guides and instructions for setup, usage, and customization.

deep-research-web-ui
This web UI tool is designed to enhance the user experience of the deep-research repository by providing a safe and secure environment for conducting AI research. It offers features such as real-time feedback, search visualization, export as PDF, support for various AI models, and Docker deployment. Users can interact with multiple AI providers and web search services, making research processes more efficient and accessible. The tool also includes recent updates that improve functionality and fix bugs, ensuring a seamless experience for users.

morphic
Morphic is an AI-powered answer engine with a generative UI. It utilizes a stack of Next.js, Vercel AI SDK, OpenAI, Tavily AI, shadcn/ui, Radix UI, and Tailwind CSS. To get started, fork and clone the repo, install dependencies, fill out secrets in the .env.local file, and run the app locally using 'bun dev'. You can also deploy your own live version of Morphic with Vercel. Verified models that can be specified to writers include Groq, LLaMA3 8b, and LLaMA3 70b.

eole
EOLE is an open language modeling toolkit based on PyTorch. It aims to provide a research-friendly approach with a comprehensive yet compact and modular codebase for experimenting with various types of language models. The toolkit includes features such as versatile training and inference, dynamic data transforms, comprehensive large language model support, advanced quantization, efficient finetuning, flexible inference, and tensor parallelism. EOLE is a work in progress with ongoing enhancements in configuration management, command line entry points, reproducible recipes, core API simplification, and plans for further simplification, refactoring, inference server development, additional recipes, documentation enhancement, test coverage improvement, logging enhancements, and broader model support.

CursorLens
Cursor Lens is an open-source tool that acts as a proxy between Cursor and various AI providers, logging interactions and providing detailed analytics to help developers optimize their use of AI in their coding workflow. It supports multiple AI providers, captures and logs all requests, provides visual analytics on AI usage, allows users to set up and switch between different AI configurations, offers real-time monitoring of AI interactions, tracks token usage, estimates costs based on token usage and model pricing. Built with Next.js, React, PostgreSQL, Prisma ORM, Vercel AI SDK, Tailwind CSS, and shadcn/ui components.

codefuse-ide
CodeFuse IDE is an AI-native integrated development environment that leverages AI technologies to enhance productivity and streamline workflows. It supports seamless integration of various models, enabling developers to customize and extend functionality. The platform is compatible with VS Code extensions, providing access to a rich ecosystem of plugins. CodeFuse IDE uses electron-forge for packaging desktop applications and supports development, building, packaging, and auto updates.
For similar tasks

OpenAGI
OpenAGI is an AI agent creation package designed for researchers and developers to create intelligent agents using advanced machine learning techniques. The package provides tools and resources for building and training AI models, enabling users to develop sophisticated AI applications. With a focus on collaboration and community engagement, OpenAGI aims to facilitate the integration of AI technologies into various domains, fostering innovation and knowledge sharing among experts and enthusiasts.

GPTSwarm
GPTSwarm is a graph-based framework for LLM-based agents that enables the creation of LLM-based agents from graphs and facilitates the customized and automatic self-organization of agent swarms with self-improvement capabilities. The library includes components for domain-specific operations, graph-related functions, LLM backend selection, memory management, and optimization algorithms to enhance agent performance and swarm efficiency. Users can quickly run predefined swarms or utilize tools like the file analyzer. GPTSwarm supports local LM inference via LM Studio, allowing users to run with a local LLM model. The framework has been accepted by ICML2024 and offers advanced features for experimentation and customization.

AgentForge
AgentForge is a low-code framework tailored for the rapid development, testing, and iteration of AI-powered autonomous agents and Cognitive Architectures. It is compatible with a range of LLM models and offers flexibility to run different models for different agents based on specific needs. The framework is designed for seamless extensibility and database-flexibility, making it an ideal playground for various AI projects. AgentForge is a beta-testing ground and future-proof hub for crafting intelligent, model-agnostic autonomous agents.

atomic_agents
Atomic Agents is a modular and extensible framework designed for creating powerful applications. It follows the principles of Atomic Design, emphasizing small and single-purpose components. Leveraging Pydantic for data validation and serialization, the framework offers a set of tools and agents that can be combined to build AI applications. It depends on the Instructor package and supports various APIs like OpenAI, Cohere, Anthropic, and Gemini. Atomic Agents is suitable for developers looking to create AI agents with a focus on modularity and flexibility.

LongRoPE
LongRoPE is a method to extend the context window of large language models (LLMs) beyond 2 million tokens. It identifies and exploits non-uniformities in positional embeddings to enable 8x context extension without fine-tuning. The method utilizes a progressive extension strategy with 256k fine-tuning to reach a 2048k context. It adjusts embeddings for shorter contexts to maintain performance within the original window size. LongRoPE has been shown to be effective in maintaining performance across various tasks from 4k to 2048k context lengths.

ax
Ax is a Typescript library that allows users to build intelligent agents inspired by agentic workflows and the Stanford DSP paper. It seamlessly integrates with multiple Large Language Models (LLMs) and VectorDBs to create RAG pipelines or collaborative agents capable of solving complex problems. The library offers advanced features such as streaming validation, multi-modal DSP, and automatic prompt tuning using optimizers. Users can easily convert documents of any format to text, perform smart chunking, embedding, and querying, and ensure output validation while streaming. Ax is production-ready, written in Typescript, and has zero dependencies.

Awesome-AI-Agents
Awesome-AI-Agents is a curated list of projects, frameworks, benchmarks, platforms, and related resources focused on autonomous AI agents powered by Large Language Models (LLMs). The repository showcases a wide range of applications, multi-agent task solver projects, agent society simulations, and advanced components for building and customizing AI agents. It also includes frameworks for orchestrating role-playing, evaluating LLM-as-Agent performance, and connecting LLMs with real-world applications through platforms and APIs. Additionally, the repository features surveys, paper lists, and blogs related to LLM-based autonomous agents, making it a valuable resource for researchers, developers, and enthusiasts in the field of AI.

CodeFuse-muAgent
CodeFuse-muAgent is a Multi-Agent framework designed to streamline Standard Operating Procedure (SOP) orchestration for agents. It integrates toolkits, code libraries, knowledge bases, and sandbox environments for rapid construction of complex Multi-Agent interactive applications. The framework enables efficient execution and handling of multi-layered and multi-dimensional tasks.
For similar jobs

promptflow
**Prompt flow** is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality.

deepeval
DeepEval is a simple-to-use, open-source LLM evaluation framework specialized for unit testing LLM outputs. It incorporates various metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., and runs locally on your machine for evaluation. It provides a wide range of ready-to-use evaluation metrics, allows for creating custom metrics, integrates with any CI/CD environment, and enables benchmarking LLMs on popular benchmarks. DeepEval is designed for evaluating RAG and fine-tuning applications, helping users optimize hyperparameters, prevent prompt drifting, and transition from OpenAI to hosting their own Llama2 with confidence.

MegaDetector
MegaDetector is an AI model that identifies animals, people, and vehicles in camera trap images (which also makes it useful for eliminating blank images). This model is trained on several million images from a variety of ecosystems. MegaDetector is just one of many tools that aims to make conservation biologists more efficient with AI. If you want to learn about other ways to use AI to accelerate camera trap workflows, check out our of the field, affectionately titled "Everything I know about machine learning and camera traps".

leapfrogai
LeapfrogAI is a self-hosted AI platform designed to be deployed in air-gapped resource-constrained environments. It brings sophisticated AI solutions to these environments by hosting all the necessary components of an AI stack, including vector databases, model backends, API, and UI. LeapfrogAI's API closely matches that of OpenAI, allowing tools built for OpenAI/ChatGPT to function seamlessly with a LeapfrogAI backend. It provides several backends for various use cases, including llama-cpp-python, whisper, text-embeddings, and vllm. LeapfrogAI leverages Chainguard's apko to harden base python images, ensuring the latest supported Python versions are used by the other components of the stack. The LeapfrogAI SDK provides a standard set of protobuffs and python utilities for implementing backends and gRPC. LeapfrogAI offers UI options for common use-cases like chat, summarization, and transcription. It can be deployed and run locally via UDS and Kubernetes, built out using Zarf packages. LeapfrogAI is supported by a community of users and contributors, including Defense Unicorns, Beast Code, Chainguard, Exovera, Hypergiant, Pulze, SOSi, United States Navy, United States Air Force, and United States Space Force.

llava-docker
This Docker image for LLaVA (Large Language and Vision Assistant) provides a convenient way to run LLaVA locally or on RunPod. LLaVA is a powerful AI tool that combines natural language processing and computer vision capabilities. With this Docker image, you can easily access LLaVA's functionalities for various tasks, including image captioning, visual question answering, text summarization, and more. The image comes pre-installed with LLaVA v1.2.0, Torch 2.1.2, xformers 0.0.23.post1, and other necessary dependencies. You can customize the model used by setting the MODEL environment variable. The image also includes a Jupyter Lab environment for interactive development and exploration. Overall, this Docker image offers a comprehensive and user-friendly platform for leveraging LLaVA's capabilities.

carrot
The 'carrot' repository on GitHub provides a list of free and user-friendly ChatGPT mirror sites for easy access. The repository includes sponsored sites offering various GPT models and services. Users can find and share sites, report errors, and access stable and recommended sites for ChatGPT usage. The repository also includes a detailed list of ChatGPT sites, their features, and accessibility options, making it a valuable resource for ChatGPT users seeking free and unlimited GPT services.

TrustLLM
TrustLLM is a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. The document explains how to use the trustllm python package to help you assess the performance of your LLM in trustworthiness more quickly. For more details about TrustLLM, please refer to project website.

AI-YinMei
AI-YinMei is an AI virtual anchor Vtuber development tool (N card version). It supports fastgpt knowledge base chat dialogue, a complete set of solutions for LLM large language models: [fastgpt] + [one-api] + [Xinference], supports docking bilibili live broadcast barrage reply and entering live broadcast welcome speech, supports Microsoft edge-tts speech synthesis, supports Bert-VITS2 speech synthesis, supports GPT-SoVITS speech synthesis, supports expression control Vtuber Studio, supports painting stable-diffusion-webui output OBS live broadcast room, supports painting picture pornography public-NSFW-y-distinguish, supports search and image search service duckduckgo (requires magic Internet access), supports image search service Baidu image search (no magic Internet access), supports AI reply chat box [html plug-in], supports AI singing Auto-Convert-Music, supports playlist [html plug-in], supports dancing function, supports expression video playback, supports head touching action, supports gift smashing action, supports singing automatic start dancing function, chat and singing automatic cycle swing action, supports multi scene switching, background music switching, day and night automatic switching scene, supports open singing and painting, let AI automatically judge the content.