Shannon

Shannon

Kubernetes/Linux of AI Agents - An enterprise-ready AI agent platform built with Rust for performance, Go for orchestration, Python for LLMs, and Solana for Web3 trust.

Stars: 258

Visit
 screenshot

Shannon is a battle-tested infrastructure for AI agents that solves problems at scale, such as runaway costs, non-deterministic failures, and security concerns. It offers features like intelligent caching, deterministic replay of workflows, time-travel debugging, WASI sandboxing, and hot-swapping between LLM providers. Shannon allows users to ship faster with zero configuration multi-agent setup, multiple AI patterns, time-travel debugging, and hot configuration changes. It is production-ready with features like WASI sandbox, token budget control, policy engine (OPA), and multi-tenancy. Shannon helps scale without breaking by reducing costs, being provider agnostic, observable by default, and designed for horizontal scaling with Temporal workflow orchestration.

README:

Shannon — Production AI Agents That Actually Work

License: MIT Go Version Rust Docker PRs Welcome

Stop burning money on AI tokens. Ship reliable agents that won't break in production.

Shannon is battle-tested infrastructure for AI agents that solves the problems you'll hit at scale: runaway costs, non-deterministic failures, and security nightmares. Built on Temporal workflows and WASI sandboxing, it's the platform we wished existed when our LLM bills hit $50k/month.

Shannon Dashboard

Real-time observability dashboard showing agent traffic control, metrics, and event streams

┌──────────────────────────────────────────────────────────────────────────────┐
│                                                                              │
│     Please ⭐ star this repo to show your support and stay updated! ⭐        │
│                                                                              │
└──────────────────────────────────────────────────────────────────────────────┘

⚡ What Makes Shannon Different

🚀 Ship Faster

  • Zero Configuration Multi-Agent - Just describe what you want: "Analyze data, then create report" → Shannon handles dependencies automatically
  • Multiple AI Patterns - ReAct, Tree-of-Thoughts, Chain-of-Thought, Debate, and Reflection (configurable via cognitive_strategy)
  • Time-Travel Debugging - Export and replay any workflow to reproduce exact agent behavior
  • Hot Configuration - Change models, prompts, and policies without restarts

🔒 Production Ready

  • WASI Sandbox - Full Python 3.11 support with bulletproof security (→ Guide)
  • Token Budget Control - Hard limits per user/session with real-time tracking
  • Policy Engine (OPA) - Define who can use which tools, models, and data
  • Multi-Tenancy - Complete isolation between users, sessions, and organizations
  • Human-in-the-Loop - Approval workflow for high-risk operations (complexity >0.7 or dangerous tools)

📈 Scale Without Breaking

  • 70% Cost Reduction - Smart caching, session management, and token optimization
  • Provider Agnostic - OpenAI, Anthropic, Google, Azure, Bedrock, DeepSeek, Groq, and more
  • Observable by Default - Real-time dashboard, Prometheus metrics, OpenTelemetry tracing
  • Distributed by Design - Horizontal scaling with Temporal workflow orchestration

Model pricing is centralized in config/models.yaml - all services load from this single source for consistent cost tracking.

🎯 Why Shannon vs. Others?

Challenge Shannon LangGraph AutoGen CrewAI
Multi-Agent Orchestration ✅ DAG/Graph workflows ✅ Stateful graphs ✅ Group chat ✅ Crew/roles
Agent Communication ✅ Message passing ✅ Tool calling ✅ Conversations ✅ Delegation
Memory & Context ✅ Chunked storage (character-based), MMR diversity ✅ Multiple types ✅ Conversation history ✅ Shared memory
Debugging Production Issues ✅ Replay any workflow ❌ Limited debugging ❌ Basic logging
Token Cost Control ✅ Hard budget limits
Security Sandbox ✅ WASI isolation
Policy Control (OPA) ✅ Fine-grained rules
Deterministic Replay ✅ Time-travel debugging
Session Persistence ✅ Redis-backed, durable ⚠️ In-memory only ⚠️ Limited
Multi-Language ✅ Go/Rust/Python ⚠️ Python only ⚠️ Python only ⚠️ Python only
Production Metrics ✅ Dashboard/Prometheus ⚠️ DIY

🚀 Quick Start

Prerequisites

  • Docker and Docker Compose
  • Make, curl, grpcurl
  • An API key for at least one supported LLM provider
Docker Setup Instructions (click to expand)

Installing Docker

macOS:

# Install Docker Desktop from https://www.docker.com/products/docker-desktop/
# Or using Homebrew:
brew install --cask docker

Linux (Ubuntu/Debian):

# Install Docker Engine
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo usermod -aG docker $USER
# Log out and back in for group changes to take effect

# Install Docker Compose
sudo apt-get update
sudo apt-get install docker-compose-plugin

Verifying Docker Installation

docker --version
docker compose version

Docker Services

The make dev command starts all services:

  • PostgreSQL: Database on port 5432
  • Redis: Cache on port 6379
  • Qdrant: Vector store on port 6333
  • Temporal: Workflow engine on port 7233 (UI on 8088)
  • Orchestrator: Go service on port 50052
  • Agent Core: Rust service on port 50051
  • LLM Service: Python service on port 8000
  • Gateway: REST API gateway on port 8080
  • Dashboard: Real-time observability UI on port 2111

30-Second Setup

git clone https://github.com/Kocoro-lab/Shannon.git
cd Shannon

# One-stop setup: creates .env, generates protobuf files
make setup

# Add your LLM API key to .env
echo "OPENAI_API_KEY=your-key-here" >> .env

# Download Python WASI interpreter for secure code execution (20MB)
./scripts/setup_python_wasi.sh

# Start all services and verify
make dev
make smoke

Your First Agent

Shannon provides multiple ways to interact with your AI agents:

Option 1: Use the Dashboard UI (Recommended for Getting Started)

# Open the Shannon Dashboard in your browser
open http://localhost:2111

# The dashboard provides:
# - Visual task submission interface
# - Real-time event streaming
# - System metrics and monitoring
# - Task history and results

Option 2: Use the REST API

# For development (no auth required)
export GATEWAY_SKIP_AUTH=1

# Submit a task via API
curl -X POST http://localhost:8080/api/v1/tasks \
  -H "Content-Type: application/json" \
  -d '{
    "query": "Analyze the sentiment of: Shannon makes AI agents simple!",
    "session_id": "demo-session-123"
  }'

# Response includes workflow_id for tracking
# {"workflow_id":"task-dev-1234567890","status":"running"}

Watch Your Agent Work in Real-Time

# Stream live events as your agent works (replace with your workflow_id)
curl -N http://localhost:8081/stream/sse?workflow_id=task-dev-1234567890

# You'll see human-readable events like:
# event: AGENT_THINKING
# data: {"message":"Analyzing sentiment: Shannon makes AI agents simple!"}
#
# event: TOOL_INVOKED
# data: {"message":"Processing natural language sentiment analysis"}
#
# event: AGENT_COMPLETED
# data: {"message":"Task completed successfully"}

Get Your Results

# Check final status and result
curl http://localhost:8080/api/v1/tasks/task-dev-1234567890

# Response includes status, result, tokens used, and metadata

Production Setup

For production, use API keys instead of GATEWAY_SKIP_AUTH:

# Create an API key (one-time setup)
make seed-api-key  # Creates test key: sk_test_123456

# Use in requests
curl -X POST http://localhost:8080/api/v1/tasks \
  -H "X-API-Key: sk_test_123456" \
  -H "Content-Type: application/json" \
  -d '{"query":"Your task here"}'
Advanced Methods: Scripts, gRPC, and Command Line (click to expand)

Using Shell Scripts

# Submit a simple task
./scripts/submit_task.sh "Analyze the sentiment of: 'Shannon makes AI agents simple!'"

# Check session usage and token tracking (session ID is in SubmitTask response message)
grpcurl -plaintext \
  -d '{"sessionId":"YOUR_SESSION_ID"}' \
  localhost:50052 shannon.orchestrator.OrchestratorService/GetSessionContext

# Export and replay a workflow history (use the workflow ID from submit_task output)
./scripts/replay_workflow.sh <WORKFLOW_ID>

Direct gRPC Calls

# Submit via gRPC
grpcurl -plaintext \
  -d '{"query":"Analyze sentiment","sessionId":"test-session"}' \
  localhost:50052 shannon.orchestrator.OrchestratorService/SubmitTask

# Stream events via gRPC
grpcurl -plaintext \
  -d '{"workflowId":"task-dev-1234567890"}' \
  localhost:50052 shannon.orchestrator.StreamingService/StreamTaskExecution

WebSocket Streaming

# Connect to WebSocket for bidirectional streaming
# Via admin port (no auth):
wscat -c ws://localhost:8081/stream/ws?workflow_id=task-dev-1234567890

# Or via gateway (with auth):
# wscat -c ws://localhost:8080/api/v1/stream/ws?workflow_id=task-dev-1234567890 \
#   -H "Authorization: Bearer YOUR_API_KEY"

Visual Debugging Tools

# Access Shannon Dashboard for real-time monitoring
open http://localhost:2111

# Dashboard features:
# - Real-time task execution and event streams
# - System metrics and performance graphs
# - Token usage tracking and budget monitoring
# - Agent traffic control visualization
# - Interactive command execution

# Access Temporal Web UI for workflow debugging
open http://localhost:8088

# Temporal UI provides:
# - Workflow execution history and timeline
# - Task status, retries, and failures
# - Input/output data for each step
# - Real-time workflow progress
# - Search workflows by ID, type, or status

The visual tools provide comprehensive monitoring:

  • Shannon Dashboard (http://localhost:2111) - Real-time agent traffic control, metrics, and events
  • Temporal UI (http://localhost:8088) - Workflow debugging and state inspection
  • Combined view - Full visibility into your AI agents' behavior and system performance

📚 Examples That Actually Matter

Click each example below to expand. These showcase Shannon's unique features that set it apart from other frameworks.

Example 1: Cost-Controlled Customer Support
curl -X POST http://localhost:8080/api/v1/tasks \
  -H "Content-Type: application/json" \
  -d '{
    "query": "Help me troubleshoot my deployment issue",
    "session_id": "user-123-session"
  }'

Key features:

  • Session persistence - Maintains conversation context across requests
  • Token tracking - Every request returns token usage and costs
  • Policy control - Apply OPA policies for allowed actions (see Example 3)
  • Result: 70% cost reduction through smart caching and session management
Example 2: Debugging Production Failures
# Production agent failed at 3am? No problem.
# Export and replay the workflow in one command
./scripts/replay_workflow.sh task-prod-failure-123

# Or specify a particular run ID
./scripts/replay_workflow.sh task-prod-failure-123 abc-def-ghi

# Output shows step-by-step execution with token counts, decisions, and state changes
# Fix the issue, add a test case, never see it again
Example 3: Multi-Team Model Governance
# config/opa/policies/data-science.rego
package shannon.teams.datascience

default allow = false

allow {
    input.team == "data-science"
    input.model in ["gpt-4o", "claude-3-sonnet"]
}

max_tokens = 50000 {
    input.team == "data-science"
}

# config/opa/policies/customer-support.rego
package shannon.teams.support

default allow = false

allow {
    input.team == "support"
    input.model == "gpt-4o-mini"
}

max_tokens = 5000 {
    input.team == "support"
}

deny_tool["database_write"] {
    input.team == "support"
}
Example 4: Security-First Code Execution
# Python code runs in isolated WASI sandbox with full standard library
./scripts/submit_task.sh "Execute Python: print('Hello from secure WASI!')"

# Even malicious code is safe
./scripts/submit_task.sh "Execute Python: import os; os.system('rm -rf /')"
# Result: OSError - system calls blocked by WASI sandbox

# Advanced: Session persistence for data analysis
./scripts/submit_task.sh "Execute Python with session 'analysis': data = [1,2,3,4,5]"
./scripts/submit_task.sh "Execute Python with session 'analysis': print(sum(data))"
# Output: 15

→ Full Python Execution Guide

Example 5: Human-in-the-Loop Approval
# Configure approval for high-complexity or dangerous operations
cat > config/features.yaml << 'EOF'
workflows:
  approval:
    enabled: true
    complexity_threshold: 0.7  # Require approval for complex tasks
    dangerous_tools: ["file_delete", "database_write", "api_call"]
EOF

# Submit a complex task that triggers approval
./scripts/submit_task.sh "Delete all temporary files older than 30 days from /tmp"

# Workflow pauses and waits for human approval
# Check Temporal UI: http://localhost:8088
# Approve via signal: temporal workflow signal --workflow-id <ID> --name approval --input '{"approved":true}'

Unique to Shannon: Configurable approval workflows based on complexity scoring and tool usage.

Example 6: Multi-Agent Memory & Learning
# Agent learns from conversation and applies knowledge
SESSION="learning-session-$(date +%s)"

# Agent learns your preferences
./scripts/submit_task.sh "I prefer Python over Java for data science" "$SESSION"
./scripts/submit_task.sh "I like using pandas and numpy for analysis" "$SESSION"
./scripts/submit_task.sh "My projects usually involve machine learning" "$SESSION"

# Later, agent recalls and applies this knowledge
./scripts/submit_task.sh "What language and tools should I use for my new data project?" "$SESSION"
# Response includes personalized recommendations based on learned preferences

# Check memory storage (character-based chunking with MMR diversity)
grpcurl -plaintext -d "{\"sessionId\":\"$SESSION\"}" \
  localhost:50052 shannon.orchestrator.OrchestratorService/GetSessionContext

Unique to Shannon: Persistent memory with intelligent chunking (4 chars ≈ 1 token) and MMR diversity ranking.

Example 7: Supervisor Workflow with Dynamic Strategy
# Complex task automatically delegates to multiple specialized agents
./scripts/submit_task.sh "Analyze our website performance, identify bottlenecks, and create an optimization plan with specific recommendations"

# Watch the orchestration in real-time
curl -N "http://localhost:8081/stream/sse?workflow_id=<WORKFLOW_ID>"

# Events show:
# - Complexity analysis (score: 0.85)
# - Strategy selection (supervisor pattern chosen)
# - Dynamic agent spawning (analyzer, investigator, planner)
# - Parallel execution with coordination
# - Synthesis and quality reflection

Unique to Shannon: Automatic workflow pattern selection based on task complexity.

Example 8: Time-Travel Debugging with State Inspection
# Production issue at 3am? Debug it step-by-step
FAILED_WORKFLOW="task-prod-failure-20250928-0300"

# Export with full state history
./scripts/replay_workflow.sh export $FAILED_WORKFLOW debug.json

# Inspect specific decision points
go run ./tools/replay -history debug.json -inspect-step 5

# Modify and test fix locally
go run ./tools/replay -history debug.json -override-activity GetLLMResponse

# Validate fix passes all historical workflows
make ci-replay

Unique to Shannon: Complete workflow state inspection and modification for debugging.

Example 9: Token Budget with Circuit Breakers
# Set strict budget with automatic fallbacks
curl -X POST http://localhost:8080/api/v1/tasks \
  -H "Content-Type: application/json" \
  -H "X-API-Key: sk_test_123456" \
  -d '{
    "query": "Generate a comprehensive market analysis report",
    "session_id": "budget-test",
    "config": {
      "budget": {
        "max_tokens": 5000,
        "fallback_model": "gpt-4o-mini",
        "circuit_breaker": {
          "threshold": 0.8,
          "cooldown_seconds": 60
        }
      }
    }
  }'

# System automatically:
# - Switches to cheaper model when 80% budget consumed
# - Implements cooldown period to prevent runaway costs
# - Returns partial results if budget exhausted

Unique to Shannon: Real-time budget enforcement with automatic degradation.

Example 10: Multi-Tenant Agent Isolation
# Each tenant gets isolated agents with separate policies
# Tenant A: Data Science team
curl -X POST http://localhost:8080/api/v1/tasks \
  -H "X-API-Key: sk_tenant_a_key" \
  -H "X-Tenant-ID: data-science" \
  -d '{"query": "Train a model on our dataset"}'

# Tenant B: Customer Support
curl -X POST http://localhost:8080/api/v1/tasks \
  -H "X-API-Key: sk_tenant_b_key" \
  -H "X-Tenant-ID: support" \
  -d '{"query": "Access customer database"}'  # Denied by OPA policy

# Complete isolation:
# - Separate memory/vector stores per tenant
# - Independent token budgets
# - Custom model access
# - Isolated session management

Unique to Shannon: Enterprise-grade multi-tenancy with OPA policy enforcement.

More Production Examples (click to expand)
  • Incident Response Bot: Auto-triages alerts with budget limits
  • Code Review Agent: Enforces security policies via OPA rules
  • Data Pipeline Monitor: Replays failed workflows for debugging
  • Compliance Auditor: Full trace of every decision and data access
  • Multi-Tenant SaaS: Complete isolation between customer agents

🏗️ Architecture

High-Level Overview

┌─────────────┐     ┌──────────────┐     ┌─────────────┐
│   Client    │────▶│ Orchestrator │────▶│ Agent Core  │
└─────────────┘     │     (Go)     │     │   (Rust)    │
                    └──────────────┘     └─────────────┘
                           │                     │
                           ▼                     ▼
                    ┌──────────────┐     ┌─────────────┐
                    │   Temporal   │     │ WASI Tools  │
                    │   Workflows  │     │   Sandbox   │
                    └──────────────┘     └─────────────┘
                           │
                           ▼
                    ┌──────────────┐
                    │ LLM Service  │
                    │   (Python)   │
                    └──────────────┘

Production Data Flow

┌─────────────────────────────────────────────────────────────────┐
│                         CLIENT LAYER                            │
├─────────────┬─────────────┬─────────────┬───────────────────────┤
│    HTTP     │    gRPC     │     SSE     │  WebSocket (soon)     │
└─────────────┴─────────────┴─────────────┴───────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────────┐
│                      ORCHESTRATOR (Go)                          │
│  ┌────────────┐  ┌────────────┐  ┌────────────┐  ┌──────────┐   │
│  │   Router   │──│   Budget   │──│  Session   │──│   OPA    │   │
│  │            │  │  Manager   │  │   Store    │  │ Policies │   │
│  └────────────┘  └────────────┘  └────────────┘  └──────────┘   │
└─────────────────────────────────────────────────────────────────┘
        │                │                 │                │
        ▼                ▼                 ▼                ▼
┌──────────────┐ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│   Temporal   │ │    Redis     │ │  PostgreSQL  │ │   Qdrant     │
│  Workflows   │ │    Cache     │ │    State     │ │   Vectors    │
│              │ │   Sessions   │ │   History    │ │   Memory     │
└──────────────┘ └──────────────┘ └──────────────┘ └──────────────┘
        │
        ▼
┌─────────────────────────────────────────────────────────────────┐
│                       AGENT CORE (Rust)                         │
│  ┌────────────┐  ┌────────────┐  ┌────────────┐  ┌──────────┐   │
│  │    WASI    │──│   Policy   │──│    Tool    │──│  Agent   │   │
│  │   Sandbox  │  │  Enforcer  │  │  Registry  │  │  Comms   │   │
│  └────────────┘  └────────────┘  └────────────┘  └──────────┘   │
└─────────────────────────────────────────────────────────────────┘
        │                                              │
        ▼                                              ▼
┌────────────────────────────────┐    ┌─────────────────────────────────┐
│     LLM SERVICE (Python)       │    │     OBSERVABILITY LAYER         │
│  ┌────────────┐ ┌────────────┐ │    │  ┌────────────┐ ┌────────────┐  │
│  │  Provider  │ │    MCP     │ │    │  │ Prometheus │ │  OpenTel   │  │
│  │  Adapter   │ │   Tools    │ │    │  │  Metrics   │ │  Traces    │  │
│  └────────────┘ └────────────┘ │    │  └────────────┘ └────────────┘  │
└────────────────────────────────┘    └─────────────────────────────────┘

Core Components

  • Orchestrator (Go): Task routing, budget enforcement, session management, OPA policy evaluation
  • Agent Core (Rust): WASI sandbox execution, policy enforcement, agent-to-agent communication
  • LLM Service (Python): Provider abstraction (15+ LLMs), MCP tools, prompt optimization
  • Gateway (Go): REST API, authentication, rate limiting, request validation
  • Dashboard (React/Next.js): Real-time monitoring, metrics visualization, event streaming
  • Data Layer: PostgreSQL (workflow state), Redis (session cache), Qdrant (vector memory)
  • Observability: Built-in dashboard, Prometheus metrics, OpenTelemetry tracing

🚦 Getting Started for Production

Day 1: Basic Setup

# Clone and configure
git clone https://github.com/Kocoro-lab/Shannon.git
cd Shannon
make setup-env
echo "OPENAI_API_KEY=sk-..." >> .env

# Launch
make dev

# Set budgets per request (see "Examples That Actually Matter" section)
# Configure in SubmitTask payload: {"budget": {"max_tokens": 5000}}

Day 2: Add Policies

# Create your first OPA policy
cat > config/opa/policies/default.rego << EOF
package shannon

default allow = false

# Allow all for dev, restrict in prod
allow {
    input.environment == "development"
}

# Production rules
allow {
    input.environment == "production"
    input.tokens_requested < 10000
    input.model in ["gpt-4o-mini", "claude-4-haiku"]
}
EOF

# Hot reload - no restart needed!

Day 7: Debug Your First Issue

# Something went wrong in production?
# 1. Find the workflow ID from logs
grep ERROR logs/orchestrator.log | tail -1

# 2. Export the workflow
./scripts/replay_workflow.sh export task-xxx-failed debug.json

# 3. Replay locally to see exactly what happened
./scripts/replay_workflow.sh replay debug.json

# 4. Fix, test, deploy with confidence

Day 30: Scale to Multiple Teams

# config/teams.yaml
teams:
  data-science:
    models: ["gpt-4o", "claude-4-sonnet"]
    max_tokens_per_day: 1000000
    tools: ["*"]

  customer-support:
    models: ["gpt-4o-mini"]
    max_tokens_per_day: 50000
    tools: ["search", "respond", "escalate"]

  engineering:
    models: ["claude-4-sonnet", "gpt-4o"]
    max_tokens_per_day: 500000
    tools: ["code_*", "test_*", "deploy_*"]

Architecture

API & Integration

🔧 Development

Local Development

# Run linters and formatters
make lint
make fmt

# Run smoke tests
make smoke

# View logs
make logs

# Check service status
make ps

🤝 Contributing

We love contributions! Please see our Contributing Guide for details.

🌟 Community

What's Coming (Roadmap)

Now → v0.1 (Production Ready)

  • Core platform stable - Go orchestrator, Rust agent-core, Python LLM service
  • Deterministic replay debugging - Export and replay any workflow execution
  • OPA policy enforcement - Fine-grained security and governance rules
  • WebSocket streaming - Real-time agent communication with event filtering and replay
  • SSE streaming - Server-sent events for browser-native streaming
  • MCP integration - Model Context Protocol for standardized tool interfaces
  • WASI sandbox - Secure code execution environment with resource limits
  • Multi-agent orchestration - DAG workflows with parallel execution
  • Vector memory - Qdrant-based semantic search and context retrieval
  • Circuit breaker patterns - Automatic failure recovery and degradation
  • Multi-provider LLM support - OpenAI, Anthropic, Google, DeepSeek, and more
  • Token budget management - Hard limits with real-time tracking
  • Session management - Durable state with Redis/PostgreSQL persistence
  • 🚧 LangGraph adapter - Bridge to LangChain ecosystem (integration framework complete)
  • 🚧 AutoGen adapter - Bridge to Microsoft AutoGen multi-agent conversations

v0.2

  • [ ] Enterprise SSO - SAML/OAuth integration with existing identity providers
  • [ ] Natural language policies - Human-readable policy definitions with AI assistance
  • [ ] Enhanced monitoring - Custom dashboards and alerting rules
  • [ ] Advanced caching - Multi-level caching with semantic deduplication
  • [ ] Real-time collaboration - Multi-user agent sessions with shared context
  • [ ] Plugin ecosystem - Third-party tool and integration marketplace
  • [ ] Workflow marketplace - Community-contributed agent templates and patterns
  • [ ] Edge deployment - WASM execution in browser environments

v0.3

  • [ ] Autonomous agent swarms - Self-organizing multi-agent systems
  • [ ] Cross-organization federation - Secure agent communication across tenants
  • [ ] Predictive scaling - ML-based resource allocation and optimization
  • [ ] Blockchain integration - Proof-of-execution and decentralized governance
  • [ ] Advanced personalization - User-specific LoRA adapters and preferences

v0.4

  • [ ] Continuous learning - Automated prompt and strategy optimization
  • [ ] Multi-agent marketplaces - Economic incentives and reputation systems
  • [ ] Advanced reasoning - Hybrid symbolic + neural approaches
  • [ ] Global deployment - Multi-region, multi-cloud architecture
  • [ ] Regulatory compliance - SOC 2, GDPR, HIPAA automation
  • [ ] AI safety frameworks - Constitutional AI and alignment mechanisms

📚 Documentation

Core Guides

API References

Get Involved

🔮 Coming Soon

Solana Integration for Web3 Trust

We're building decentralized trust infrastructure with Solana blockchain:

  • Cryptographic Verification: On-chain attestation of AI agent actions and results
  • Immutable Audit Trail: Blockchain-based proof of task execution
  • Smart Contract Interoperability: Enable AI agents to interact with DeFi and Web3 protocols
  • Token-Gated Capabilities: Control agent permissions through blockchain tokens
  • Decentralized Reputation: Build trust through verifiable on-chain agent performance

Stay tuned for our Web3 trust layer - bringing transparency and verifiability to AI systems!

🙏 Acknowledgments & Inspirations

Shannon builds upon and integrates amazing work from the open-source community:

Core Inspirations

  • Agent Traffic Control - The original inspiration for our retro terminal UI design and agent visualization concept
  • Model Context Protocol (MCP) - Anthropic's protocol for standardized LLM-tool interactions
  • Claude Code - Used extensively in developing Shannon's codebase
  • Temporal - The bulletproof workflow orchestration engine powering Shannon's reliability

Key Technologies

  • LangGraph - Inspiration for stateful agent architectures
  • AutoGen - Microsoft's multi-agent conversation framework
  • WASI - WebAssembly System Interface for secure code execution
  • Open Policy Agent - Policy engine for fine-grained access control

Community Contributors

Special thanks to all our contributors and the broader AI agent community for feedback, bug reports, and feature suggestions.

📄 License

MIT License - Use it anywhere, modify anything, zero restrictions. See LICENSE.


Stop debugging AI failures. Start shipping reliable agents.

DiscordGitHub

If Shannon saves you time or money, let us know! We love success stories.
Twitter/X: @shannon_agents

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for Shannon

Similar Open Source Tools

For similar tasks

For similar jobs