MediCareAI
MediCareAI 是一个基于人工智能的智能疾病管理系统,专为患者随访和疾病追踪设计。系统整合了医疗指南、AI 智能诊断和文档处理功能,为医疗机构提供全面的健康支持。
Stars: 83
MediCareAI is an intelligent disease management system powered by AI, designed for patient follow-up and disease tracking. It integrates medical guidelines, AI-powered diagnosis, and document processing to provide comprehensive healthcare support. The system includes features like user authentication, patient management, AI diagnosis, document processing, medical records management, knowledge base system, doctor collaboration platform, and admin system. It ensures privacy protection through automatic PII detection and cleaning for document sharing.
README:
Features | 功能特性 • Quick Start | 快速开始 • Architecture | 架构 • Documentation | 文档 • License | 许可证
作者 Author: 苏业钦 (Su Yeqin)
MediCareAI 是一个基于人工智能的智能疾病管理系统,专为患者随访和疾病追踪设计。系统整合了医疗指南、AI 智能诊断和文档处理功能,为医疗机构提供全面的健康支持。
- 🔐 用户认证与管理 - JWT 安全认证,用户注册登录,会话管理,支持患者、医生、管理员三端
- 👤 患者档案管理 - 完整的患者信息,病历号管理,紧急联系人,阿里云 OSS 安全存储患者病例资料
- 🤖 AI 智能诊断 - 支持 OpenAI 兼容 API 的 AI 大模型,实时症状分析,结合患者历史病历和上传文档
- 📄 文档智能处理 - MinerU 文档抽取,支持 PDF/图片/文档,自动 PII 脱敏保护隐私
- 📊 医疗记录管理 - 病例管理,文档附件存储于阿里云 OSS,随访计划
- 🏥 知识库系统 - 基于向量检索的智能知识库(RAG),管理员可动态创建医疗指南,AI 诊断自动引用循证医学建议
- 👨⚕️ 医生协作平台 - @医生提及系统,医患双向沟通,医生可在共享病例上添加专业评论
- 🏛️ 管理员系统 - 系统监控(CPU/内存/磁盘),医生认证审核,审计日志,知识库向量化管理
MediCareAI is an intelligent disease management system powered by AI, designed for patient follow-up and disease tracking. It combines medical guidelines, AI-powered diagnosis, and document processing to provide comprehensive healthcare support.
- 🔐 User Authentication - JWT secure auth, registration/login, session management, supports Patient/Doctor/Admin platforms
- 👤 Patient Management - Complete patient profiles, medical record numbers, emergency contacts, Alibaba Cloud OSS secure storage for patient case data
- 🤖 AI Diagnosis - Support for OpenAI-compatible API AI models, real-time symptom analysis, combines patient history and uploaded documents
- 📄 Document Processing - MinerU extraction, PDF/image/document support with automatic PII cleaning for privacy protection
- 📊 Medical Records - Case management, document attachments stored in Alibaba Cloud OSS, follow-up plans
- 🏥 Knowledge Base - Vector-based intelligent knowledge base (RAG), admins can dynamically create medical guidelines, AI diagnosis automatically references evidence-based recommendations
- 👨⚕️ Doctor Collaboration Platform - @doctor mention system, bidirectional patient-doctor communication, doctors can add professional comments on shared cases
- 🏛️ Admin System - System monitoring (CPU/Memory/Disk), doctor verification workflow, audit logging, knowledge base vectorization management
- 🔒 Privacy Protection - Automatic PII detection and cleaning for document sharing
English: Secure JWT-based authentication supporting three platforms: Patient, Doctor, and Admin. Each platform has dedicated UI and permissions. Refresh tokens, session management, and complete audit logging for compliance.
中文: 基于 JWT 的安全认证系统,支持患者端、医生端、管理员端三个平台。每个平台拥有独立的界面和权限。支持刷新令牌、会话管理和完整的合规审计日志。
English: Complete patient workflow from symptom submission to diagnosis history:
- Symptom Submission: AI diagnosis with optional @doctor mention, document upload (PDF/images)
- AI Diagnosis Workflow: Smart RAG retrieves relevant medical guidelines, combines patient history + uploaded documents + knowledge base for comprehensive AI analysis
- Medical Records: View diagnosis history with AI feedback, doctor comments, and patient replies
- Document Storage: All medical documents securely stored in Alibaba Cloud OSS with PII cleaning
中文: 完整的患者工作流程,从症状提交到诊疗记录:
- 症状提交: AI 智能诊断,支持 @医生提及,文档上传(PDF/图片)
- AI 诊断工作流: 智能 RAG 检索相关医疗指南,结合患者历史 + 上传文档 + 知识库进行综合 AI 分析
- 诊疗记录: 查看诊断历史、AI 反馈、医生评论和患者回复
- 文档存储: 所有医疗文档使用阿里云 OSS 安全存储,自动 PII 脱敏
English: Advanced AI diagnosis system with Retrieval-Augmented Generation:
- Smart Knowledge Retrieval: Vector-based RAG automatically selects relevant medical guidelines from knowledge base
- Multi-Source Context: Combines patient personal info + uploaded documents (MinerU extracted) + knowledge base guidelines
- Streaming Response: Real-time diagnosis output with progress indicators
- Evidence-Based: Each recommendation references specific medical guidelines from knowledge base
- Language Adaptation: Automatically responds in Chinese or English based on UI language
中文: 基于检索增强生成(RAG)的高级 AI 诊断系统:
- 智能知识检索: 基于向量的 RAG 自动从知识库选择相关医疗指南
- 多源上下文: 结合患者个人信息 + 上传文档(MinerU 提取)+ 知识库指南
- 流式响应: 实时诊断输出,带进度指示器
- 循证医学: 每个建议都引用知识库中的具体医疗指南
- 语言自适应: 根据界面语言自动使用中文或英文回复
English: Professional tools for verified doctors:
- Doctor Verification: Registration with medical license, admin approval workflow
- @My Cases: View cases where patient mentioned the doctor, time-based filtering (Today/3 days/1 week)
- Case Comments: Add professional comments on shared cases (suggestion, diagnosis, treatment advice)
- Patient Replies: View patient replies to your comments only (privacy protected, cannot see other doctors' threads)
- Professional Profile: Display hospital, department, specialty, title with anonymized name
中文: 为已认证医生提供的专业工具:
- 医生认证: 使用医疗执业证注册,管理员审批工作流
- @我的病例: 查看患者提及医生的病例,时间筛选(今日/三天内/一周内)
- 病例评论: 在共享病例上添加专业评论(建议、诊断意见、治疗建议)
- 患者回复: 仅查看对自己评论的患者回复(隐私保护,无法查看其他医生的线程)
- 专业档案: 显示医院、科室、专业、职称,名称匿名化显示
English: Comprehensive administrative control panel:
- System Monitoring: Real-time CPU, Memory, Disk usage with psutil (color-coded alerts)
- AI Diagnosis Analytics: Statistics, anomaly detection, performance metrics
- Doctor Verification: Review doctor registrations, approve/reject with audit logging
- Knowledge Base Management: Vectorize documents, manage medical guidelines, RAG configuration
- Audit Logging: Complete operation logs for compliance and security
- Data Persistence: Docker volumes with restart: always policy
中文: 全面的管理控制面板:
- 系统监控: 实时 CPU、内存、磁盘使用率,使用 psutil(彩色预警)
- AI 诊断分析: 统计、异常检测、性能指标
- 医生认证: 审核医生注册、批准/拒绝,带审计日志
- 知识库管理: 文档向量化、管理医疗指南、RAG 配置
- 审计日志: 完整的操作日志用于合规和安全
- 数据持久化: Docker 卷配置 restart: always 策略
English: Intelligent document pipeline:
- MinerU Integration: Extract text from PDFs, images, Word, PPT with OCR
- Alibaba Cloud OSS: Secure cloud storage for all medical documents
- PII Cleaning: Automatic detection and masking of personal information before AI processing
- Vectorization: Documents converted to embeddings for RAG knowledge retrieval
- Reusable Content: Extracted documents can be reused in multiple AI diagnoses
中文: 智能文档处理流程:
- MinerU 集成: 从 PDF、图片、Word、PPT 提取文本,支持 OCR
- 阿里云 OSS: 所有医疗文档的安全云存储
- PII 清洗: AI 处理前自动检测和屏蔽个人信息
- 向量化: 文档转换为嵌入向量用于 RAG 知识检索
- 内容复用: 提取的文档可在多个 AI 诊断中重复使用
English: Self-improving medical knowledge system:
- Vector Embeddings: Qwen API for document vectorization
- Smart RAG Selector: Automatically selects relevant guidelines for each diagnosis
- Admin Management: Upload, organize, and manage medical guidelines via admin panel
- Chunking Strategy: Intelligent text splitting for optimal retrieval
- Version Control: Track knowledge base updates and changes
中文: 自我完善的医学知识系统:
- 向量嵌入: 使用 Qwen API 进行文档向量化
- 智能 RAG 选择器: 为每次诊断自动选择相关指南
- 管理员管理: 通过管理面板上传、组织、管理医疗指南
- 分块策略: 智能文本分割以获得最佳检索效果
- 版本控制: 跟踪知识库更新和变更
English: Enterprise-grade security measures:
- PII Protection: Automatic detection of names, IDs, phone numbers, addresses in documents
- Role-Based Access: Strict separation between patient, doctor, and admin data
- Privacy Controls: Doctors only see their own threads; patients see all doctor comments
- Audit Trail: Every action logged for compliance
- Secure Storage: Sensitive data in Alibaba Cloud OSS with access controls
中文: 企业级安全措施:
- PII 保护: 自动检测文档中的姓名、身份证号、电话、地址
- 基于角色的访问: 患者、医生、管理员数据严格分离
- 隐私控制: 医生仅查看自己的线程;患者查看所有医生评论
- 审计追踪: 每个操作都记录用于合规
- 安全存储: 敏感数据存储在阿里云 OSS 中,带访问控制
English:
- Docker 20.10+ & Docker Compose 2.0+
- 8GB+ RAM, 20GB+ free disk space
- Linux/macOS/Windows with WSL2
中文:
- Docker 20.10+ 和 Docker Compose 2.0+
- 8GB 以上内存,20GB 以上可用磁盘空间
- Linux/macOS/Windows (需 WSL2)
MediCareAI uses Docker for deployment, supporting any platform with Docker installed (Linux, macOS, Windows with WSL2).
Prerequisites | 环境要求:
- Docker 20.10+ & Docker Compose 2.0+
- 8GB+ RAM, 20GB+ free disk space
# 1. Clone repository / 克隆仓库
git clone https://github.com/yourusername/MediCareAI.git
cd MediCareAI
# 2. Configure environment / 配置环境变量
cp .env.example .env
# Edit .env with your configuration / 编辑 .env 文件
# 3. Generate SSL certificates (for local testing) / 生成 SSL 证书(本地测试)
mkdir -p docker/nginx/ssl
openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
-keyout docker/nginx/ssl/key.pem \
-out docker/nginx/ssl/cert.pem \
-subj "/C=CN/ST=State/L=City/O=MediCareAI/CN=localhost"
# 4. Start application / 启动应用
# 数据库会自动初始化,管理员账号会自动创建
docker-compose up -dgit pull
docker compose pull
docker compose up -d# 1. Clone repository / 克隆仓库
git clone https://github.com/yourusername/MediCareAI.git
cd MediCareAI
# 2. Configure environment / 配置环境变量
cp .env.example .env
# Edit .env with your configuration / 编辑 .env 文件
# 3. Generate SSL certificates (for local testing) / 生成 SSL 证书(本地测试)
mkdir -p docker/nginx/ssl
openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
-keyout docker/nginx/ssl/key.pem \
-out docker/nginx/ssl/cert.pem \
-subj "/C=CN/ST=State/L=City/O=MediCareAI/CN=localhost"
# 4. Start application / 启动应用
# 数据库会自动初始化,管理员账号会自动创建
docker-compose up -d- Frontend | 前端: http://localhost
- API Docs | API 文档: http://localhost/api/docs
- Health Check | 健康检查: http://localhost/health
系统启动后会自动创建默认管理员账号:
-
邮箱 | Email:
[email protected] -
密码 | Password:
admin123456 -
角色 | Role:
admin (super)
管理员平台访问地址:
- http://localhost:8080 (管理员平台 | Admin Platform)
┌─────────────────────────────────────────────────────────────────┐
│ Nginx Reverse Proxy │
│ (Port 80/443 - SSL/TLS) │
└───────────────────────────┬─────────────────────────────────────┘
│
┌───────────────┼───────────────┐
│ │ │
┌───────────▼──────┐ ┌──────▼──────┐ ┌──────▼────────┐
│ Frontend │ │ Backend │ │ API Docs │
│ HTML/CSS/JS │ │ FastAPI │ │ (Swagger) │
│ (Port 3000) │ │ (Port 8000)│ │ │
└──────────────────┘ └──────┬──────┘ └───────────────┘
│
┌───────────────────┼───────────────────┐
│ │ │
┌───────▼──────┐ ┌──────────▼──────────┐ ┌─────▼──────────┐
│ PostgreSQL │ │ Redis │ │ MinerU API │
│ Database │ │ Cache │ │ (Document AI) │
│ (Port 5432) │ │ (Port 6379) │ │ │
└──────────────┘ └─────────────────────┘ └────────────────┘
│
▼
┌──────────────────┐
│ AI LLM API │
│ (OpenAI-compatible│
│ API Support) │
└──────────────────┘
English:
- Frontend: Vanilla HTML/CSS/JavaScript served by Nginx, three platforms (Patient/Doctor/Admin)
- Backend: FastAPI (Python 3.11) with async SQLAlchemy ORM
- Database: PostgreSQL 17 for data persistence
- Cache: Redis 7.4 for session and data caching
- AI Engine: OpenAI-compatible API support with RAG (Retrieval-Augmented Generation)
- Document AI: MinerU API for intelligent text extraction
- Cloud Storage: Alibaba Cloud OSS for secure patient document storage
- Vector Database: Qwen API for knowledge base embeddings and semantic search
中文:
- 前端: 原生 HTML/CSS/JavaScript,Nginx 提供静态文件服务,三端平台(患者/医生/管理员)
- 后端: FastAPI (Python 3.11),使用异步 SQLAlchemy ORM
- 数据库: PostgreSQL 17 用于数据持久化
- 缓存: Redis 7.4 用于会话和数据缓存
- AI 引擎: 支持 OpenAI 兼容 API,带 RAG(检索增强生成)
- 文档 AI: MinerU API 用于智能文本提取
- 云存储: 阿里云 OSS 用于患者文档安全存储
- 向量数据库: Qwen API 用于知识库嵌入和语义搜索
MediCareAI/
├── 📁 backend/ # Backend - 后端
│ ├── 📁 app/
│ │ ├── 📁 api/ # API Routes - API 路由
│ │ │ └── 📁 api_v1/
│ │ │ ├── 📁 endpoints/ # API Endpoints - API 端点
│ │ │ │ ├── auth.py # Authentication - 认证
│ │ │ │ ├── patients.py # Patient CRUD - 患者管理
│ │ │ │ ├── ai.py # AI Diagnosis - AI 诊断
│ │ │ │ ├── medical_cases.py # Medical Records - 医疗记录
│ │ │ │ ├── documents.py # File Upload - 文件上传
│ │ │ │ ├── admin.py # Admin System - 管理员系统
│ │ │ │ ├── sharing.py # Data Sharing - 数据分享
│ │ │ │ ├── doctor.py # Doctor Platform - 医生平台
│ │ │ │ └── vector_embedding.py # Vector Operations - 向量操作
│ │ │ └── api.py
│ │ ├── 📁 core/ # Core Config - 核心配置
│ │ ├── 📁 models/ # Database Models - 数据库模型 (22 tables)
│ │ ├── 📁 schemas/ # Pydantic Schemas - 数据验证模式
│ │ ├── 📁 services/ # Business Logic - 业务逻辑层
│ │ │ ├── ai_service.py # AI Diagnosis - AI 诊断
│ │ │ ├── ai_model_config_service.py # AI Model Management - AI 模型管理
│ │ │ ├── kb_vectorization_service.py # KB Vectorization - 知识库向量化
│ │ │ ├── unified_kb_service.py # Unified KB - 统一知识库
│ │ │ ├── generic_rag_selector.py # Smart RAG - 智能检索
│ │ │ ├── pii_cleaner_service.py # PII Cleaning - PII 清洗
│ │ │ └── oss_service.py # Alibaba Cloud OSS - 阿里云 OSS
│ │ ├── 📁 db/ # Database - 数据库
│ │ ├── 📁 utils/ # Utilities - 工具函数
│ │ └── main.py # Application Entry - 应用入口
│ ├── 📁 data/
│ │ └── 📁 knowledge_bases/ # Knowledge Base - 知识库
│ │ ├── 📁 unified/ # Unified KB - 统一知识库
│ │ └── 📁 active/ # Active Configs - 激活配置
│ ├── 📁 tests/ # Tests - 测试
│ ├── 📁 uploads/ # Uploads - 上传文件
│ ├── Dockerfile # Backend Container - 后端容器
│ └── entrypoint.sh # Entry Script - 启动脚本
├── 📁 frontend/ # Frontend - 前端 (Three Platforms)
│ ├── index.html # Patient Homepage - 患者首页
│ ├── login.html # Patient Login - 患者登录
│ ├── register.html # Patient Register - 患者注册
│ ├── symptom-submit.html # AI Diagnosis - AI 诊断
│ ├── medical-records.html # Medical History - 诊疗记录
│ ├── user-profile.html # User Profile - 个人中心
│ ├── doctor-dashboard.html # Doctor Dashboard - 医生仪表板
│ ├── doctor-mentions.html # @My Cases - @我的病例
│ ├── doctor-case-detail.html # Case Detail - 病例详情
│ ├── doctor-login.html # Doctor Login - 医生登录
│ ├── doctor-register.html # Doctor Register - 医生注册
│ ├── doctor-profile.html # Doctor Profile - 医生档案
│ ├── admin-dashboard.html # Admin Dashboard - 管理仪表板
│ ├── admin-doctors.html # Doctor Verification - 医生认证
│ ├── admin-knowledge-base.html # Knowledge Base - 知识库管理
│ ├── admin-ai-models.html # AI Models - AI 模型配置
│ ├── admin-logs.html # Audit Logs - 审计日志
│ ├── admin-login.html # Admin Login - 管理员登录
│ ├── platform-select.html # Platform Selector - 平台选择
│ ├── server.py # Dev Server - 开发服务器
│ ├── 📁 src/ # Source Code - 源代码
│ │ ├── 📁 components/ # Components - 组件
│ │ ├── 📁 contexts/ # Contexts - 上下文
│ │ ├── 📁 pages/ # Pages - 页面
│ │ ├── 📁 services/ # Services - 服务
│ │ └── 📁 types/ # Types - 类型定义
│ ├── 📁 public/ # Public Assets - 静态资源
│ └── Dockerfile # Frontend Container - 前端容器
├── 📁 docker/ # Docker Config - Docker 配置
│ ├── 📁 nginx/ # Nginx Configuration - Nginx 配置
│ └── 📁 postgres/ # PostgreSQL Setup - PostgreSQL 设置
├── 📁 docs/ # Documentation - 文档
│ ├── DEPLOYMENT.mdx # Deployment Guide - 部署指南
│ ├── ARCHITECTURE.mdx # System Design - 架构设计
│ ├── API.mdx # API Reference - API 参考
│ ├── TESTING.mdx # Testing Guide - 测试指南
│ ├── AI_ASSISTANT.mdx # AI Assistant Context - AI 助手上下文
│ ├── SELINUX-GUIDE.mdx # SELinux Configuration - SELinux 配置指南
│ └── TROUBLESHOOTING.mdx # Troubleshooting Guide - 故障排除指南
├── 📁 scripts/ # Utility Scripts - 实用脚本
│ ├── backup.sh # Backup Script - 备份脚本
│ ├── test_integration.sh # Integration Test - 集成测试
│ ├── test_login.sh # Login Test - 登录测试
│ └── cleanup-docker.sh # Docker Cleanup - Docker 清理
├── docker-compose.yml # Docker Compose Config - 编排配置
├── docker-compose.prod.yml # Production Config - 生产配置
├── .env.example # Environment Template - 环境模板
├── README.md # This File - 本文件
├── CHANGELOG.md # Changelog - 变更日志
├── CONTRIBUTING.md # Contributing - 贡献指南
├── CODE_OF_CONDUCT.md # Code of Conduct - 行为准则
└── LICENSE # MIT License - MIT 许可证
| Variable | Description (EN) | 描述 (中文) | Required |
|---|---|---|---|
POSTGRES_PASSWORD |
PostgreSQL database password | PostgreSQL 数据库密码 | Yes |
REDIS_PASSWORD |
Redis cache password | Redis 缓存密码 | Yes |
JWT_SECRET_KEY |
JWT signing key (min 32 chars) | JWT 签名密钥(至少32字符) | Yes |
JWT_ALGORITHM |
JWT algorithm | JWT 算法 | No (default: HS256) |
| AI Configuration | AI 配置 | ||
AI_API_KEY |
AI model API key | AI 模型 API 密钥 | Yes |
AI_API_URL |
AI model endpoint URL | AI 模型端点 URL | Yes |
AI_MODEL_ID |
AI model identifier | AI 模型标识符 | Yes |
| Document Processing | 文档处理 | ||
MINERU_TOKEN |
MinerU API authentication token | MinerU API 认证令牌 | Yes |
MAX_FILE_SIZE |
Max upload file size (bytes) | 最大上传文件大小(字节) | No (default: 200MB) |
| Alibaba Cloud OSS | 阿里云对象存储 | ||
OSS_ACCESS_KEY_ID |
Alibaba Cloud Access Key ID | 阿里云访问密钥 ID | Yes |
OSS_ACCESS_KEY_SECRET |
Alibaba Cloud Access Key Secret | 阿里云访问密钥 Secret | Yes |
OSS_BUCKET_NAME |
OSS Bucket name for document storage | 文档存储 Bucket 名称 | Yes |
OSS_ENDPOINT |
OSS Endpoint (e.g., oss-cn-beijing.aliyuncs.com) | OSS 端点地址 | Yes |
| Vector Database | 向量数据库 | ||
QWEN_API_KEY |
Qwen API key for embeddings | Qwen API 密钥(用于向量嵌入) | Yes |
QWEN_API_URL |
Qwen API endpoint | Qwen API 端点 | Yes |
QWEN_EMBEDDING_MODEL |
Embedding model ID | 嵌入模型 ID | No (default: text-embedding-v1) |
| System | 系统 | ||
DEBUG |
Enable debug mode | 启用调试模式 | No (default: false) |
See .env.example for full configuration template.
- 📖 README.md - This file / 本文件 (Overview & Quick Start)
- 🚀 DEPLOYMENT.mdx - Detailed deployment guide / 详细部署指南
- 🏗️ ARCHITECTURE.mdx - System architecture & design / 系统架构与设计
- 🔌 API.mdx - Complete API reference / 完整 API 参考
- 🤝 CONTRIBUTING.md - Development guidelines / 开发指南
- 📝 CHANGELOG.md - Full release history / 完整版本历史
- 🤖 AI_ASSISTANT.mdx - AI assistant context / AI 助手上下文
- 🆘 TROUBLESHOOTING.mdx - Troubleshooting & emergency fixes / 故障排除与应急修复
POST /api/v1/auth/register # User registration / 用户注册
POST /api/v1/auth/login # User login / 用户登录
POST /api/v1/auth/logout # User logout / 用户登出
GET /api/v1/auth/me # Get current user / 获取当前用户
PUT /api/v1/auth/me # Update user info / 更新用户信息
GET /api/v1/patients # List patients / 患者列表
POST /api/v1/patients # Create patient / 创建患者
GET /api/v1/patients/me # Get my patient profile / 获取我的患者档案
PUT /api/v1/patients/me # Update my profile / 更新我的档案
GET /api/v1/patients/{id} # Get patient by ID / 根据 ID 获取患者
POST /api/v1/ai/comprehensive-diagnosis # Full diagnosis / 完整诊断
POST /api/v1/ai/diagnose # Simple diagnosis / 简单诊断
POST /api/v1/ai/analyze # Symptom analysis / 症状分析
GET /api/v1/medical-cases # List cases / 病例列表
POST /api/v1/medical-cases # Create case / 创建病例
GET /api/v1/medical-cases/{id} # Get case / 获取病例
POST /api/v1/documents/upload # Upload file / 上传文件
GET /api/v1/documents/{id} # Get document / 获取文档
POST /api/v1/documents/{id}/extract # Extract text / 提取文本
Full API documentation is available at /api/docs when the application is running.
完整 API 文档在应用运行时可访问 /api/docs。
# Backend tests / 后端测试
cd backend
pytest
# Frontend tests / 前端测试
cd frontend
npm test# Health check / 健康检查
curl http://localhost/health
# Register test / 注册测试
curl -X POST http://localhost:8000/api/v1/auth/register \
-H "Content-Type: application/json" \
-d '{"email":"[email protected]","password":"test123456","full_name":"Test User"}'
# Login test / 登录测试
curl -X POST http://localhost:8000/api/v1/auth/login \
-H "Content-Type: application/json" \
-d '{"email":"[email protected]","password":"test123456"}'位于 scripts/ 目录:
-
backup.sh- 备份数据库和配置文件 / Backup database and config files -
test_integration.sh- 集成测试 / Integration testing -
test_login.sh- 登录测试 / Login testing
cd backend
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r requirements.txt
uvicorn app.main:app --reload --host 0.0.0.0 --port 8000cd frontend
# No build step needed / 无需构建步骤
# Simply serve static files / 直接提供静态文件
python -m http.server 3000We welcome contributions! Please see CONTRIBUTING.md for details.
欢迎贡献!详情请参阅 CONTRIBUTING.md。
# 1. Fork the repository / Fork 仓库
# 2. Create feature branch / 创建功能分支
git checkout -b feature/AmazingFeature
# 3. Commit changes / 提交更改
git commit -m 'Add some AmazingFeature'
# 4. Push to branch / 推送到分支
git push origin feature/AmazingFeature
# 5. Open Pull Request / 创建 Pull RequestThis project is licensed under the MIT License - see the LICENSE file for details.
本项目采用 MIT 许可证 - 详情请参阅 LICENSE 文件。
MIT License
Copyright (c) 2025 MediCareAI Contributors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
- AI LLM: OpenAI-compatible API support / 支持 OpenAI 兼容 API
- MinerU: Document processing and text extraction / 文档处理和文本提取
- FastAPI: Modern, fast web framework / 现代快速 Web 框架
- PostgreSQL: Powerful open-source database / 强大的开源数据库
- OpenXLab: AI model hosting platform / AI 模型托管平台
- Issues: GitHub Issues
- Documentation: Full Documentation
- Email: [email protected]
MediCareAI - Empowering Healthcare with AI / 用 AI 赋能医疗健康
Made with ❤️ for better healthcare / 为更好的医疗而造
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for MediCareAI
Similar Open Source Tools
MediCareAI
MediCareAI is an intelligent disease management system powered by AI, designed for patient follow-up and disease tracking. It integrates medical guidelines, AI-powered diagnosis, and document processing to provide comprehensive healthcare support. The system includes features like user authentication, patient management, AI diagnosis, document processing, medical records management, knowledge base system, doctor collaboration platform, and admin system. It ensures privacy protection through automatic PII detection and cleaning for document sharing.
topsha
LocalTopSH is an AI Agent Framework designed for companies and developers who require 100% on-premise AI agents with data privacy. It supports various OpenAI-compatible LLM backends and offers production-ready security features. The framework allows simple deployment using Docker compose and ensures that data stays within the user's network, providing full control and compliance. With cost-effective scaling options and compatibility in regions with restrictions, LocalTopSH is a versatile solution for deploying AI agents on self-hosted infrastructure.
hub
Hub is an open-source, high-performance LLM gateway written in Rust. It serves as a smart proxy for LLM applications, centralizing control and tracing of all LLM calls and traces. Built for efficiency, it provides a single API to connect to any LLM provider. The tool is designed to be fast, efficient, and completely open-source under the Apache 2.0 license.
mcp-prompts
mcp-prompts is a Python library that provides a collection of prompts for generating creative writing ideas. It includes a variety of prompts such as story starters, character development, plot twists, and more. The library is designed to inspire writers and help them overcome writer's block by offering unique and engaging prompts to spark creativity. With mcp-prompts, users can access a wide range of writing prompts to kickstart their imagination and enhance their storytelling skills.
open-computer-use
Open Computer Use is an open-source platform that enables AI agents to control computers through browser automation, terminal access, and desktop interaction. It is designed for developers to create autonomous AI workflows. The platform allows agents to browse the web, run terminal commands, control desktop applications, orchestrate multi-agents, stream execution, and is 100% open-source and self-hostable. It provides capabilities similar to Anthropic's Claude Computer Use but is fully open-source and extensible.
Shannon
Shannon is a battle-tested infrastructure for AI agents that solves problems at scale, such as runaway costs, non-deterministic failures, and security concerns. It offers features like intelligent caching, deterministic replay of workflows, time-travel debugging, WASI sandboxing, and hot-swapping between LLM providers. Shannon allows users to ship faster with zero configuration multi-agent setup, multiple AI patterns, time-travel debugging, and hot configuration changes. It is production-ready with features like WASI sandbox, token budget control, policy engine (OPA), and multi-tenancy. Shannon helps scale without breaking by reducing costs, being provider agnostic, observable by default, and designed for horizontal scaling with Temporal workflow orchestration.
DeepTutor
DeepTutor is an AI-powered personalized learning assistant that offers a suite of modules for massive document knowledge Q&A, interactive learning visualization, knowledge reinforcement with practice exercise generation, deep research, and idea generation. The tool supports multi-agent collaboration, dynamic topic queues, and structured outputs for various tasks. It provides a unified system entry for activity tracking, knowledge base management, and system status monitoring. DeepTutor is designed to streamline learning and research processes by leveraging AI technologies and interactive features.
solo-server
Solo Server is a lightweight server designed for managing hardware-aware inference. It provides seamless setup through a simple CLI and HTTP servers, an open model registry for pulling models from platforms like Ollama and Hugging Face, cross-platform compatibility for effortless deployment of AI models on hardware, and a configurable framework that auto-detects hardware components (CPU, GPU, RAM) and sets optimal configurations.
tinyclaw
TinyClaw is a lightweight wrapper around Claude Code that connects WhatsApp via QR code, processes messages sequentially, maintains conversation context, runs 24/7 in tmux, and is ready for multi-channel support. Its key innovation is the file-based queue system that prevents race conditions and enables multi-channel support. TinyClaw consists of components like whatsapp-client.js for WhatsApp I/O, queue-processor.js for message processing, heartbeat-cron.sh for health checks, and tinyclaw.sh as the main orchestrator with a CLI interface. It ensures no race conditions, is multi-channel ready, provides clean responses using claude -c -p, and supports persistent sessions. Security measures include local storage of WhatsApp session and queue files, channel-specific authentication, and running Claude with user permissions.
sandbox
AIO Sandbox is an all-in-one agent sandbox environment that combines Browser, Shell, File, MCP operations, and VSCode Server in a single Docker container. It provides a unified, secure execution environment for AI agents and developers, with features like unified file system, multiple interfaces, secure execution, zero configuration, and agent-ready MCP-compatible APIs. The tool allows users to run shell commands, perform file operations, automate browser tasks, and integrate with various development tools and services.
distill
Distill is a reliability layer for LLM context that provides deterministic deduplication to remove redundancy before reaching the model. It aims to reduce redundant data, lower costs, provide faster responses, and offer more efficient and deterministic results. The tool works by deduplicating, compressing, summarizing, and caching context to ensure reliable outputs. It offers various installation methods, including binary download, Go install, Docker usage, and building from source. Distill can be used for tasks like deduplicating chunks, connecting to vector databases, integrating with AI assistants, analyzing files for duplicates, syncing vectors to Pinecone, querying from the command line, and managing configuration files. The tool supports self-hosting via Docker, Docker Compose, building from source, Fly.io deployment, Render deployment, and Railway integration. Distill also provides monitoring capabilities with Prometheus-compatible metrics, Grafana dashboard, and OpenTelemetry tracing.
aippt_PresentationGen
A SpringBoot web application that generates PPT files using a llm. The tool preprocesses single-page templates and dynamically combines them to generate PPTX files with text replacement functionality. It utilizes technologies such as SpringBoot, MyBatis, MySQL, Redis, WebFlux, Apache POI, Aspose Slides, OSS, and Vue2. Users can deploy the tool by configuring various parameters in the application.yml file and setting up necessary resources like MySQL, OSS, and API keys. The tool also supports integration with open-source image libraries like Unsplash for adding images to the presentations.
cordum
Cordum is a control plane for AI agents designed to close the Trust Gap by providing safety, observability, and control features. It allows teams to deploy autonomous agents with built-in governance mechanisms, including safety policies, workflow orchestration, job routing, observability, and human-in-the-loop approvals. The tool aims to address the challenges of deploying AI agents in production by offering visibility, safety rails, audit trails, and approval mechanisms for sensitive operations.
mimiclaw
MimiClaw is a pocket AI assistant that runs on a $5 chip, specifically designed for the ESP32-S3 board. It operates without Linux or Node.js, using pure C language. Users can interact with MimiClaw through Telegram, enabling it to handle various tasks and learn from local memory. The tool is energy-efficient, running on USB power 24/7. With MimiClaw, users can have a personal AI assistant on a chip the size of a thumb, making it convenient and accessible for everyday use.
AI-CloudOps
AI+CloudOps is a cloud-native operations management platform designed for enterprises. It aims to integrate artificial intelligence technology with cloud-native practices to significantly improve the efficiency and level of operations work. The platform offers features such as AIOps for monitoring data analysis and alerts, multi-dimensional permission management, visual CMDB for resource management, efficient ticketing system, deep integration with Prometheus for real-time monitoring, and unified Kubernetes management for cluster optimization.
WenShape
WenShape is a context engineering system for creating long novels. It addresses the challenge of narrative consistency over thousands of words by using an orchestrated writing process, dynamic fact tracking, and precise token budget management. All project data is stored in YAML/Markdown/JSONL text format, naturally supporting Git version control.
For similar tasks
MediCareAI
MediCareAI is an intelligent disease management system powered by AI, designed for patient follow-up and disease tracking. It integrates medical guidelines, AI-powered diagnosis, and document processing to provide comprehensive healthcare support. The system includes features like user authentication, patient management, AI diagnosis, document processing, medical records management, knowledge base system, doctor collaboration platform, and admin system. It ensures privacy protection through automatic PII detection and cleaning for document sharing.
For similar jobs
sweep
Sweep is an AI junior developer that turns bugs and feature requests into code changes. It automatically handles developer experience improvements like adding type hints and improving test coverage.
teams-ai
The Teams AI Library is a software development kit (SDK) that helps developers create bots that can interact with Teams and Microsoft 365 applications. It is built on top of the Bot Framework SDK and simplifies the process of developing bots that interact with Teams' artificial intelligence capabilities. The SDK is available for JavaScript/TypeScript, .NET, and Python.
ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.
classifai
Supercharge WordPress Content Workflows and Engagement with Artificial Intelligence. Tap into leading cloud-based services like OpenAI, Microsoft Azure AI, Google Gemini and IBM Watson to augment your WordPress-powered websites. Publish content faster while improving SEO performance and increasing audience engagement. ClassifAI integrates Artificial Intelligence and Machine Learning technologies to lighten your workload and eliminate tedious tasks, giving you more time to create original content that matters.
chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.
BricksLLM
BricksLLM is a cloud native AI gateway written in Go. Currently, it provides native support for OpenAI, Anthropic, Azure OpenAI and vLLM. BricksLLM aims to provide enterprise level infrastructure that can power any LLM production use cases. Here are some use cases for BricksLLM: * Set LLM usage limits for users on different pricing tiers * Track LLM usage on a per user and per organization basis * Block or redact requests containing PIIs * Improve LLM reliability with failovers, retries and caching * Distribute API keys with rate limits and cost limits for internal development/production use cases * Distribute API keys with rate limits and cost limits for students
uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.
griptape
Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. Griptape's core components include Structures (Agents, Pipelines, and Workflows), Tasks, Tools, Memory (Conversation Memory, Task Memory, and Meta Memory), Drivers (Prompt and Embedding Drivers, Vector Store Drivers, Image Generation Drivers, Image Query Drivers, SQL Drivers, Web Scraper Drivers, and Conversation Memory Drivers), Engines (Query Engines, Extraction Engines, Summary Engines, Image Generation Engines, and Image Query Engines), and additional components (Rulesets, Loaders, Artifacts, Chunkers, and Tokenizers). Griptape enables developers to create AI-powered applications with ease and efficiency.