ztachip

ztachip

Opensource software/hardware platform to build edge AI solutions deployed on FPGA or custom ASIC hardware.

Stars: 218

Visit
 screenshot

ztachip is a RISCV accelerator designed for vision and AI edge applications, offering up to 20-50x acceleration compared to non-accelerated RISCV implementations. It features an innovative tensor processor hardware to accelerate various vision tasks and TensorFlow AI models. ztachip introduces a new tensor programming paradigm for massive processing/data parallelism. The repository includes technical documentation, code structure, build procedures, and reference design examples for running vision/AI applications on FPGA devices. Users can build ztachip as a standalone executable or a micropython port, and run various AI/vision applications like image classification, object detection, edge detection, motion detection, and multi-tasking on supported hardware.

README:

Introduction

Ztachip is a Multicore, Data-Aware, Embedded RISC-V AI Accelerator for Edge Inferencing running on low-end FPGA devices or custom ASIC.

Acceleration provided by ztachip can be up to 20-50x compared with a non-accelerated RISCV implementation on many vision/AI tasks. ztachip performs also better when compared with a RISCV that is equipped with vector extension.

An innovative tensor processor hardware is implemented to accelerate a wide range of different tasks from many common vision tasks such as edge-detection, optical-flow, motion-detection, color-conversion to executing TensorFlow AI models. This is one key difference of ztachip when compared with other accelerators that tend to accelerate only a narrow range of applications only (for example convolution neural network only).

A new tensor programming paradigm is introduced to allow programmers to leverage the massive processing/data parallelism enabled by ztachip tensor processor.

Ztachip Architecture

Features

Hardware

Ztachip consists of the following functional units tied via an AXI Bus to a VexRicsv CPU, a DRAM and other peripherals as follows

  1. The Mcore, a Scheduling Processor
  2. A Dataplane, to stream the next data and instruction to the Tensor Engine .
  3. A Scratch-Pad Memory to temporarily hold data
  4. A Stream Processor to manage data IO
  5. Tensor Engine with 28x Pcores that can be configured to act like a systolic array to perform in memory compute each containing a Scalar and Vector ALU, with 16 Threads of execution on private memory.

Software

The software provided consists of

  1. Ztachip DSL C-like compiler
  2. AI vision libraries
  3. Application examples
  4. Micropython port and examples

Demo

ztachip demo video

Documentation

  1. Technical overview

  2. Hardware Architecture

  3. Programmers Guide

  4. VisionAI Stack Programmers Guide

  5. MicroPython Programmers Guide

Code structure

.
├── Documentation         Overview on HW/SW and programmer's guide for ztachip, pcore, visionai and tensor
├── HW                    Hardware
│   ├── examples          Reference Design: Integration of Vexriscv, Ztachip, DDR3, VGA, Camera, LEDs & Buttons
│   ├── platform          Memory IP depenedencies for different FPGA synthesis (e.g. XIlinx, Altera) or ASIC
│   ├── simulation        RTL Simulation
│   └── src               RTL of Ztachip's top design, Scalar/Vector ALU, Dataplane, Pcore, SoC integration etc
├── LICENSE.md
├── micropython           Micropython Support
│   ├── examples          edge_detection, image_classification, motion_detect, object_detect, point_of_interest etc
│   ├── micropython       micropython
│   └── ztachip_port      ztachip micropython port
├── README.md
├── SW                    Software
│   ├── apps              AI kernel libraries of canny edge detector, harris corner, neural nets, optical flow etc
│   ├── base              C runtime zero, Ztachip application libraries and other utilities
│   ├── compiler          Ztachip C-like DSL compiler that generates instructions for the tensor processor
│   ├── fs                File for data inference to be downloaded together with the build image
│   ├── linker.ld         linker script for Ztachip
│   ├── makefile          Main project makefile
│   ├── makefile.kernels  Kernel makefile
│   ├── makefile.sim      Makefile to test Kernels
│   ├── sim               C source to test kernels
│   └── src               SW Main (visionai and unit test entry points), SoC drivers and Zta's micropython API
│                         This is a good place to learn on how to use ztachip prebuilt vision and AI stack.
└── tools                 openocd and vexriscv interface descriptions

In HW/platform, a generic implementation is also provided for simulation environment. Any FPGA/ASIC can be supported with the appropriate implementation of this wrapper layer. Choose the appropriate sub-folder that corresponds to your FPGA target.

Also, in SW/apps, many prebuilt acceleration functions are provided to provide programmers with a fast path to leverage ztachip acceleration. This folder is also a good place to learn on how to program your own custom acceleration functions.

Build procedure

The build procedure produces 2 seperate images.

One image is a standalone executable where user applications are using ztachip using a native [C/C++ library interface] (https://github.com/ztachip/ztachip/raw/master/Documentation/visionai_programmer_guide.pdf)

The second image is a micropython port of ztachip. With this image, applications are using ztachip using a Python programming interface

Prerequisites (Ubuntu)

sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev libexpat-dev python3-pip
pip3 install numpy

Download and build RISCV tool chain

The build below is a pretty long.

export PATH=/opt/riscv/bin:$PATH
git clone https://github.com/riscv/riscv-gnu-toolchain
cd riscv-gnu-toolchain
./configure --prefix=/opt/riscv --with-arch=rv32im --with-abi=ilp32
sudo make

Download ztachip

git clone https://github.com/ztachip/ztachip.git

Build ztachip as standalone image

export PATH=/opt/riscv/bin:$PATH
cd ztachip
cd SW/compiler
make clean all
cd ../fs
python3 bin2c.py
cd ..
make clean all -f makefile.kernels
make clean all

Build ztachip as micropython port

You are required to complete the previous build procedure for standalone image even if your target image is micropython image. Below is procedure to build micropython image after you have completed the standalone image build procedure.

git clone https://github.com/micropython/micropython.git
cd micropython/ports
cp -avr <ztachip installation folder>/micropython/ztachip_port .
cd ztachip_port
export PATH=/opt/riscv/bin:$PATH
export ZTACHIP=<ztachip installation folder>
make clean
make

Build FPGA

  • Download Xilinx Vivado Webpack free edition.

  • Create the project file, build FPGA image and program it to flash as described in FPGA build procedure

Run reference design example

The following demos are demonstrated on the ArtyA7-100T FPGA development board.

  • Image classification with TensorFlow's Mobinet

  • Object detection with TensorFlow's SSD-Mobinet

  • Edge detection using Canny algorithm

  • Point-of-interest using Harris-Corner algorithm

  • Motion detection

  • Multi-tasking with ObjectDetection, edge detection, Harris-Corner, Motion Detection running at same time

To run the demo, press button0 to switch between different AI/vision applications.

Preparing hardware

Reference design example required the hardware components below...

Attach the VGA and Camera modules to Arty-A7 board according to picture below

arty_board

Connect camera_module to Arty board according to picture below

camera_to_arty

Open serial port

If you are running ztachip's micropython image, then you need to connect to the serial port. Arty-A7 provides serial port connectivity via USB. Serial port flow control must be disabled.

sudo minicom -w -D /dev/ttyUSB1

Note: After the first time connecting to serial port, reset the board again (press button next to USB port and wait for led to turn green) since USB serial must be the first device to connect to USB before ztachip.

Download and build OpenOCD package required for GDB debugger's JTAG connectivity

In this example, we will load the program using GDB debugger and JTAG

sudo apt-get install libtool automake libusb-1.0.0-dev texinfo libusb-dev libyaml-dev pkg-config
git clone https://github.com/SpinalHDL/openocd_riscv
cd openocd_riscv
./bootstrap
./configure --enable-ftdi --enable-dummy
make
cp <ztachip installation folder>/tools/openocd/soc_init.cfg .
cp <ztachip installation folder>/tools/openocd/usb_connect.cfg .
cp <ztachip installation folder>/tools/openocd/xilinx-xc7.cfg .
cp <ztachip installation folder>/tools/openocd/jtagspi.cfg .
cp <ztachip installation folder>/tools/openocd/cpu0.yaml .

Launch OpenOCD

Make sure the green led below the reset button (near USB connector) is on. This indicates that FPGA has been loaded correctly. Then launch OpenOCD to provide JTAG connectivity for GDB debugger

cd <openocd_riscv installation folder>
sudo src/openocd -f usb_connect.cfg -c 'set MURAX_CPU0_YAML cpu0.yaml' -f soc_init.cfg

Uploading SW image via GDB debugger

Upload procedure for standalone SW image option

Open another terminal, then issue commands below to upload the standalone image

export PATH=/opt/riscv/bin:$PATH
cd <ztachip installation folder>/SW/src
riscv32-unknown-elf-gdb ../build/ztachip.elf

Upload procedure for micropython SW image option

Open another terminal, then issue commands below to upload the micropython image.

export PATH=/opt/riscv/bin:$PATH
cd <Micropython installation folder>/ports/ztachip_port
riscv32-unknown-elf-gdb ./build/firmware.elf

Start the image transfer

From GDB debugger prompt, issue the commands below This step takes some time since some AI models are also transfered.

set pagination off
target remote localhost:3333
set remotetimeout 60
set arch riscv:rv32
monitor reset halt
load

Run the program

After sucessfully loading the program, issue command below at GDB prompt

continue

Running standalone image

If you are running the standalone image, press button0 to switch between different AI/vision applications. The sample application running is implemented in vision_ai.cpp

Running micropython image

If you are running the micropython image, Micropython allows for entering python code in paste mode at the serial port.
To use the paste mode, hit Ctrl+E then paste one of the examples to the serial port, then hit ctrl+D to execute the python code.

Hit any button to return back to Micropython prompt.

How to port ztachip to other FPGA,ASIC and SOC

Click here for procedure on how to port ztachip and its applications to other FPGA/ASIC and SOC.

Run ztachip in simulation

First build example test program for simulation. The example test program is under SW/apps/test and SW/sim

export PATH=/opt/riscv/bin:$PATH
cd ztachip
cd SW/compiler
make clean all
cd ..
make clean all -f makefile.kernels
make clean all -f makefile.sim

Then compile all RTL codes below for simulation

HW/src
HW/platform/simulation
HW/simulation

The top component of your simulation is HW/simulation/main.vhd

main:reset_in must be driven low for few clocks before going high.

main:clk_x2_main must be twice the speed of main:clk_main and in phase.

The main:led_out should blink everytime a test result is passed.

Contact

This project is free to use. You can open an issue or a discussion on github. But for business consulting and support, please contact us

Follow ztachip on Twitter

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for ztachip

Similar Open Source Tools

For similar tasks

For similar jobs