superagentx

superagentx

Lightweight Multi Agent AI Orchestrator Framework with AGI Capabilities.

Stars: 53

Visit
 screenshot

SuperAgentX is a lightweight open-source AI framework designed for multi-agent applications with Artificial General Intelligence (AGI) capabilities. It offers goal-oriented multi-agents with retry mechanisms, easy deployment through WebSocket, RESTful API, and IO console interfaces, streamlined architecture with no major dependencies, contextual memory using SQL + Vector databases, flexible LLM configuration supporting various Gen AI models, and extendable handlers for integration with diverse APIs and data sources. It aims to accelerate the development of AGI by providing a powerful platform for building autonomous AI agents capable of executing complex tasks with minimal human intervention.

README:


SuperAgentX: A lightweight autonomous true multi-agent framework with AGI capabilities.


Python 3.10+ GitHub Repo stars License: MIT

Key Features

🚀 Open-Source Framework: A lightweight, open-source AI framework built for multi-agent applications with Artificial General Intelligence (AGI) capabilities.

🎯 Goal-Oriented Multi-Agents: This technology enables the creation of agents with retry mechanisms to achieve set goals. Communication between agents is Parallel, Sequential, or hybrid.

🏖️ Easy Deployment: Offers WebSocket, RESTful API, and IO console interfaces for rapid setup of agent-based AI solutions.

♨️ Streamlined Architecture: Enterprise-ready scalable and pluggable architecture. No major dependencies; built independently!

📚 Contextual Memory: Uses SQL + Vector databases to store and retrieve user-specific context effectively.

🧠 Flexible LLM Configuration: Supports simple configuration options of various Gen AI models.

🤝🏻 Extendable Handlers: Allows integration with diverse APIs, databases, data warehouses, data lakes, IoT streams, and more, making them accessible for function-calling features.

Table of contents

What is SuperAgentX?

The Ultimate Modular Autonomous Agentic AI Framework for Progressing Towards AGI.

SuperAgentX is an advanced agentic AI framework designed to accelerate the development of Artificial General Intelligence (AGI). It provides a powerful, modular, and flexible platform for building autonomous AI agents capable of executing complex tasks with minimal human intervention. By integrating cutting-edge AI technologies and promoting efficient, scalable agent behavior, SuperAgentX embodies a critical step forward in the path toward superintelligence and AGI. Whether for research, development, or deployment, SuperAgentX is built to push the boundaries of what's possible with autonomous AI systems.

Why SuperAgentX?

SuperAgentX addresses the growing need for highly capable, autonomous AI systems that can perform complex tasks with minimal human intervention. As we approach the limits of narrow AI, there's a need for an adaptable and scalable framework to bridge the gap toward AGI (Artificial General Intelligence). Here’s why SuperAgentX stands out:

Super: Cutting-edge AI systems with exceptional capabilities, paving the way to AGI (Artificial General Intelligence) and ASI (Artificial Super Intelligence).

Agent: Autonomous Multi AI agent framework designed to make decisions, act independently, and handle complex tasks. X: The unknown, the limitless, the extra factor that makes SuperAgentX revolutionary, futuristic, and transformative.

Getting Started

pip install superagentx
Usage - Example SuperAgentX Code

This SuperAgentX example utilizes two handlers, Amazon and Walmart, to search for product items based on user input from the IO Console.

  1. It uses Parallel execution of handler in the agent
  2. Memory Context Enabled
  3. LLM configured to OpenAI
  4. Pre-requisites

Set OpenAI Key:

export OPENAI_API_KEY=sk-xxxxxxxxxxxxxxxxxxxxxxxxx

Set Rapid API Key Free Subscription for Amazon, Walmart Search APIs

export RAPID_API_KEY=XXXXXXXXXXXXXXXXXXXXXXXXX
# Additional lib needs to install
# `pip install superagentx-handlers`
# python3 superagentx_examples/ecom_iopipe.py

import asyncio

from rich import print as rprint

from superagentx.memory import Memory
from superagentx.agent import Agent
from superagentx.engine import Engine
from superagentx.llm import LLMClient
from superagentx.agentxpipe import AgentXPipe
from superagentx.pipeimpl.iopipe import IOPipe
from superagentx.prompt import PromptTemplate
from superagentx_handlers.ecommerce.amazon import AmazonHandler
from superagentx_handlers.ecommerce.walmart import WalmartHandler


async def main():
    """
    Launches the e-commerce pipeline console client for processing requests and handling data.
    """

    # LLM Configuration
    llm_config = {'llm_type': 'openai'}
    llm_client: LLMClient = LLMClient(llm_config=llm_config)

    # Enable Memory
    memory = Memory(memory_config={"llm_client": llm_client})

    # Add Two Handlers (Tools) - Amazon, Walmart
    amazon_ecom_handler = AmazonHandler()
    walmart_ecom_handler = WalmartHandler()

    # Prompt Template
    prompt_template = PromptTemplate()

    # Amazon & Walmart Engine to execute handlers
    amazon_engine = Engine(
        handler=amazon_ecom_handler,
        llm=llm_client,
        prompt_template=prompt_template
    )
    walmart_engine = Engine(
        handler=walmart_ecom_handler,
        llm=llm_client,
        prompt_template=prompt_template
    )

    # Create Agent with Amazon, Walmart Engines execute in Parallel - Search Products from user prompts
    ecom_agent = Agent(
        name='Ecom Agent',
        goal="Get me the best search results",
        role="You are the best product searcher",
        llm=llm_client,
        prompt_template=prompt_template,
        engines=[[amazon_engine, walmart_engine]]
    )

    # Pipe Interface to send it to public accessible interface (Cli Console / WebSocket / Restful API)
    pipe = AgentXPipe(
        agents=[ecom_agent],
        memory=memory
    )

    # Create IO Cli Console - Interface
    io_pipe = IOPipe(
        search_name='SuperAgentX Ecom',
        agentx_pipe=pipe,
        read_prompt=f"\n[bold green]Enter your search here"
    )
    await io_pipe.start()


if __name__ == '__main__':
    try:
        asyncio.run(main())
    except (KeyboardInterrupt, asyncio.CancelledError):
        rprint("\nUser canceled the [bold yellow][i]pipe[/i]!")
Usage - Example SuperAgentX Result

SuperAgentX searches for product items requested by the user in the console, validates them against the set goal, and returns the result. It retains the context, allowing it to respond to the user's next prompt in the IO Console intelligently.

Output

Architecture

Large Language Models

Icon LLM Name                       Status
OpenAI                      
Azure OpenAI
AWS Bedrock
Google Gemini
Meta Llama
Ollama
Claude AI
Mistral AI
IBM WatsonX

Environment Setup

$ python3.12 -m pip install poetry
$ cd <path-to>/superagentx
$ python3.12 -m venv venv
$ source venv/bin/activate
(venv) $ poetry install

License

SuperAgentX is released under the MIT License.

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for superagentx

Similar Open Source Tools

For similar tasks

For similar jobs