web-llm
High-performance In-browser LLM Inference Engine
Stars: 13132
WebLLM is a modular and customizable javascript package that directly brings language model chats directly onto web browsers with hardware acceleration. Everything runs inside the browser with no server support and is accelerated with WebGPU. WebLLM is fully compatible with OpenAI API. That is, you can use the same OpenAI API on any open source models locally, with functionalities including json-mode, function-calling, streaming, etc. We can bring a lot of fun opportunities to build AI assistants for everyone and enable privacy while enjoying GPU acceleration.
README:
High-Performance In-Browser LLM Inference Engine.
WebLLM is a high-performance in-browser LLM inference engine that brings language model inference directly onto web browsers with hardware acceleration. Everything runs inside the browser with no server support and is accelerated with WebGPU.
WebLLM is fully compatible with OpenAI API. That is, you can use the same OpenAI API on any open source models locally, with functionalities including streaming, JSON-mode, function-calling (WIP), etc.
We can bring a lot of fun opportunities to build AI assistants for everyone and enable privacy while enjoying GPU acceleration.
You can use WebLLM as a base npm package and build your own web application on top of it by following the examples below. This project is a companion project of MLC LLM, which enables universal deployment of LLM across hardware environments.
-
In-Browser Inference: WebLLM is a high-performance, in-browser language model inference engine that leverages WebGPU for hardware acceleration, enabling powerful LLM operations directly within web browsers without server-side processing.
-
Full OpenAI API Compatibility: Seamlessly integrate your app with WebLLM using OpenAI API with functionalities such as streaming, JSON-mode, logit-level control, seeding, and more.
-
Structured JSON Generation: WebLLM supports state-of-the-art JSON mode structured generation, implemented in the WebAssembly portion of the model library for optimal performance. Check WebLLM JSON Playground on HuggingFace to try generating JSON output with custom JSON schema.
-
Extensive Model Support: WebLLM natively supports a range of models including Llama 3, Phi 3, Gemma, Mistral, Qwen(通义千问), and many others, making it versatile for various AI tasks. For the complete supported model list, check MLC Models.
-
Custom Model Integration: Easily integrate and deploy custom models in MLC format, allowing you to adapt WebLLM to specific needs and scenarios, enhancing flexibility in model deployment.
-
Plug-and-Play Integration: Easily integrate WebLLM into your projects using package managers like NPM and Yarn, or directly via CDN, complete with comprehensive examples and a modular design for connecting with UI components.
-
Streaming & Real-Time Interactions: Supports streaming chat completions, allowing real-time output generation which enhances interactive applications like chatbots and virtual assistants.
-
Web Worker & Service Worker Support: Optimize UI performance and manage the lifecycle of models efficiently by offloading computations to separate worker threads or service workers.
-
Chrome Extension Support: Extend the functionality of web browsers through custom Chrome extensions using WebLLM, with examples available for building both basic and advanced extensions.
Check the complete list of available models on MLC Models. WebLLM supports a subset of these available models and the list can be accessed at prebuiltAppConfig.model_list
.
Here are the primary families of models currently supported:
- Llama: Llama 3, Llama 2, Hermes-2-Pro-Llama-3
- Phi: Phi 3, Phi 2, Phi 1.5
- Gemma: Gemma-2B
- Mistral: Mistral-7B-v0.3, Hermes-2-Pro-Mistral-7B, NeuralHermes-2.5-Mistral-7B, OpenHermes-2.5-Mistral-7B
- Qwen (通义千问): Qwen2 0.5B, 1.5B, 7B
If you need more models, request a new model via opening an issue or check Custom Models for how to compile and use your own models with WebLLM.
Learn how to use WebLLM to integrate large language models into your application and generate chat completions through this simple Chatbot example:
For an advanced example of a larger, more complicated project, check WebLLM Chat.
More examples for different use cases are available in the examples folder.
WebLLM offers a minimalist and modular interface to access the chatbot in the browser. The package is designed in a modular way to hook to any of the UI components.
# npm
npm install @mlc-ai/web-llm
# yarn
yarn add @mlc-ai/web-llm
# or pnpm
pnpm install @mlc-ai/web-llm
Then import the module in your code.
// Import everything
import * as webllm from "@mlc-ai/web-llm";
// Or only import what you need
import { CreateMLCEngine } from "@mlc-ai/web-llm";
Thanks to jsdelivr.com, WebLLM can be imported directly through URL and work out-of-the-box on cloud development platforms like jsfiddle.net, Codepen.io, and Scribbler:
import * as webllm from "https://esm.run/@mlc-ai/web-llm";
It can also be dynamicall imported as:
const webllm = await import ("https://esm.run/@mlc-ai/web-llm");
Most operations in WebLLM are invoked through the MLCEngine
interface. You can create an MLCEngine
instance and loading the model by calling the CreateMLCEngine()
factory function.
(Note that loading models requires downloading and it can take a significant amount of time for the very first run without caching previously. You should properly handle this asynchronous call.)
import { CreateMLCEngine } from "@mlc-ai/web-llm";
// Callback function to update model loading progress
const initProgressCallback = (initProgress) => {
console.log(initProgress);
}
const selectedModel = "Llama-3.1-8B-Instruct-q4f32_1-MLC";
const engine = await CreateMLCEngine(
selectedModel,
{ initProgressCallback: initProgressCallback }, // engineConfig
);
Under the hood, this factory function does the following steps for first creating an engine instance (synchronous) and then loading the model (asynchronous). You can also do them separately in your application.
import { MLCEngine } from "@mlc-ai/web-llm";
// This is a synchronous call that returns immediately
const engine = new MLCEngine({
initProgressCallback: initProgressCallback
});
// This is an asynchronous call and can take a long time to finish
await engine.reload(selectedModel);
After successfully initializing the engine, you can now invoke chat completions using OpenAI style chat APIs through the engine.chat.completions
interface. For the full list of parameters and their descriptions, check section below and OpenAI API reference.
(Note: The model
parameter is not supported and will be ignored here. Instead, call CreateMLCEngine(model)
or engine.reload(model)
instead as shown in the Create MLCEngine above.)
const messages = [
{ role: "system", content: "You are a helpful AI assistant." },
{ role: "user", content: "Hello!" },
]
const reply = await engine.chat.completions.create({
messages,
});
console.log(reply.choices[0].message);
console.log(reply.usage);
WebLLM also supports streaming chat completion generating. To use it, simply pass stream: true
to the engine.chat.completions.create
call.
const messages = [
{ role: "system", content: "You are a helpful AI assistant." },
{ role: "user", content: "Hello!" },
]
// Chunks is an AsyncGenerator object
const chunks = await engine.chat.completions.create({
messages,
temperature: 1,
stream: true, // <-- Enable streaming
stream_options: { include_usage: true },
});
let reply = "";
for await (const chunk of chunks) {
reply += chunk.choices[0]?.delta.content || "";
console.log(reply);
if (chunk.usage) {
console.log(chunk.usage); // only last chunk has usage
}
}
const fullReply = await engine.getMessage();
console.log(fullReply);
You can put the heavy computation in a worker script to optimize your application performance. To do so, you need to:
- Create a handler in the worker thread that communicates with the frontend while handling the requests.
- Create a Worker Engine in your main application, which under the hood sends messages to the handler in the worker thread.
For detailed implementations of different kinds of Workers, check the following sections.
WebLLM comes with API support for WebWorker so you can hook the generation process into a separate worker thread so that the computing in the worker thread won't disrupt the UI.
We create a handler in the worker thread that communicates with the frontend while handling the requests.
// worker.ts
import { WebWorkerMLCEngineHandler } from "@mlc-ai/web-llm";
// A handler that resides in the worker thread
const handler = new WebWorkerMLCEngineHandler();
self.onmessage = (msg: MessageEvent) => {
handler.onmessage(msg);
};
In the main logic, we create a WebWorkerMLCEngine
that
implements the same MLCEngineInterface
. The rest of the logic remains the same.
// main.ts
import { CreateWebWorkerMLCEngine } from "@mlc-ai/web-llm";
async function main() {
// Use a WebWorkerMLCEngine instead of MLCEngine here
const engine = await CreateWebWorkerMLCEngine(
new Worker(
new URL("./worker.ts", import.meta.url),
{
type: "module",
}
),
selectedModel,
{ initProgressCallback }, // engineConfig
);
// everything else remains the same
}
WebLLM comes with API support for ServiceWorker so you can hook the generation process into a service worker to avoid reloading the model in every page visit and optimize your application's offline experience.
(Note, Service Worker's life cycle is managed by the browser and can be killed any time without notifying the webapp. ServiceWorkerMLCEngine
will try to keep the service worker thread alive by periodically sending heartbeat events, but your application should also include proper error handling. Check keepAliveMs
and missedHeatbeat
in ServiceWorkerMLCEngine
for more details.)
We create a handler in the worker thread that communicates with the frontend while handling the requests.
// sw.ts
import { ServiceWorkerMLCEngineHandler } from "@mlc-ai/web-llm";
let handler: ServiceWorkerMLCEngineHandler;
self.addEventListener("activate", function (event) {
handler = new ServiceWorkerMLCEngineHandler();
console.log("Service Worker is ready");
});
Then in the main logic, we register the service worker and create the engine using
CreateServiceWorkerMLCEngine
function. The rest of the logic remains the same.
// main.ts
import { MLCEngineInterface, CreateServiceWorkerMLCEngine } from "@mlc-ai/web-llm";
if ("serviceWorker" in navigator) {
navigator.serviceWorker.register(
new URL("sw.ts", import.meta.url), // worker script
{ type: "module" },
);
}
const engine: MLCEngineInterface =
await CreateServiceWorkerMLCEngine(
selectedModel,
{ initProgressCallback }, // engineConfig
);
You can find a complete example on how to run WebLLM in service worker in examples/service-worker.
You can also find examples of building Chrome extension with WebLLM in examples/chrome-extension and examples/chrome-extension-webgpu-service-worker. The latter one leverages service worker, so the extension is persistent in the background.
WebLLM is designed to be fully compatible with OpenAI API. Thus, besides building a simple chatbot, you can also have the following functionalities with WebLLM:
- streaming: return output as chunks in real-time in the form of an AsyncGenerator
- json-mode: efficiently ensure output is in JSON format, see OpenAI Reference for more.
-
seed-to-reproduce: use seeding to ensure a reproducible output with fields
seed
. -
function-calling (WIP): function calling with fields
tools
andtool_choice
(with preliminary support); or manual function calling withouttools
ortool_choice
(keeps the most flexibility).
WebLLM works as a companion project of MLC LLM and it supports custom models in MLC format. It reuses the model artifact and builds the flow of MLC LLM. To compile and use your own models with WebLLM, please check out MLC LLM document on how to compile and deploy new model weights and libraries to WebLLM.
Here, we go over the high-level idea. There are two elements of the WebLLM package that enable new models and weight variants.
-
model
: Contains a URL to model artifacts, such as weights and meta-data. -
model_lib
: A URL to the web assembly library (i.e. wasm file) that contains the executables to accelerate the model computations.
Both are customizable in the WebLLM.
import { CreateMLCEngine } from "@mlc-ai/web-llm";
async main() {
const appConfig = {
"model_list": [
{
"model": "/url/to/my/llama",
"model_id": "MyLlama-3b-v1-q4f32_0",
"model_lib": "/url/to/myllama3b.wasm",
}
],
};
// override default
const chatOpts = {
"repetition_penalty": 1.01
};
// load a prebuilt model
// with a chat option override and app config
// under the hood, it will load the model from myLlamaUrl
// and cache it in the browser cache
// The chat will also load the model library from "/url/to/myllama3b.wasm",
// assuming that it is compatible to the model in myLlamaUrl.
const engine = await CreateMLCEngine(
"MyLlama-3b-v1-q4f32_0",
{ appConfig }, // engineConfig
chatOpts,
);
}
In many cases, we only want to supply the model weight variant, but
not necessarily a new model (e.g. NeuralHermes-Mistral
can reuse Mistral
's
model library). For examples of how a model library can be shared by different model variants,
see webllm.prebuiltAppConfig
.
NOTE: you don't need to build from source unless you would like to modify the WebLLM package. To use the npm, simply follow Get Started or any of the examples instead.
To build from source, simply run:
npm install
npm run build
Then, to test the effects of your code change in an example, inside examples/get-started/package.json
, change from "@mlc-ai/web-llm": "^0.2.73"
to "@mlc-ai/web-llm": ../..
.
Then run:
cd examples/get-started
npm install
npm start
Note that sometimes you would need to switch between file:../..
and ../..
to trigger npm to recognize new changes. In the worst case, you can run:
cd examples/get-started
rm -rf node_modules dist package-lock.json .parcel-cache
npm install
npm start
WebLLM's runtime largely depends on TVMjs: https://github.com/apache/tvm/tree/main/web
While it is also available as an npm package: https://www.npmjs.com/package/@mlc-ai/web-runtime, you can build it from source if needed by following the steps below.
-
Install emscripten. It is an LLVM-based compiler that compiles C/C++ source code to WebAssembly.
- Follow the installation instruction to install the latest emsdk.
- Source
emsdk_env.sh
bysource path/to/emsdk_env.sh
, so thatemcc
is reachable from PATH and the commandemcc
works.
We can verify the successful installation by trying out
emcc
terminal.Note: We recently found that using the latest
emcc
version may run into issues during runtime. Use./emsdk install 3.1.56
instead of./emsdk install latest
for now as a workaround. The error may look likeInit error, LinkError: WebAssembly.instantiate(): Import #6 module="wasi_snapshot_preview1" function="proc_exit": function import requires a callable
-
In
./package.json
, change from"@mlc-ai/web-runtime": "0.18.0-dev2",
to"@mlc-ai/web-runtime": "file:./tvm_home/web",
. -
Setup necessary environment
Prepare all the necessary dependencies for web build:
./scripts/prep_deps.sh
In this step, if
$TVM_SOURCE_DIR
is not defined in the environment, we will execute the following line to buildtvmjs
dependency:git clone https://github.com/mlc-ai/relax 3rdparty/tvm-unity --recursive
This clones the current HEAD of
mlc-ai/relax
. However, it may not always be the correct branch or commit to clone. To build a specific npm version from source, refer to the version bump PR, which states which branch (i.e.mlc-ai/relax
orapache/tvm
) and which commit the current WebLLM version depends on. For instance, version 0.2.52, according to its version bump PR https://github.com/mlc-ai/web-llm/pull/521, is built by checking out the following commit https://github.com/apache/tvm/commit/e6476847753c80e054719ac47bc2091c888418b6 inapache/tvm
, rather than the HEAD ofmlc-ai/relax
.Besides,
--recursive
is necessary and important. Otherwise, you may encounter errors likefatal error: 'dlpack/dlpack.h' file not found
. -
Build WebLLM Package
npm run build
-
Validate some of the sub-packages
You can then go to the subfolders in examples to validate some of the sub-packages. We use Parcelv2 for bundling. Although Parcel is not very good at tracking parent directory changes sometimes. When you make a change in the WebLLM package, try to edit the
package.json
of the subfolder and save it, which will trigger Parcel to rebuild.
- Demo App: WebLLM Chat
- If you want to run LLM on native runtime, check out MLC-LLM
- You might also be interested in Web Stable Diffusion.
This project is initiated by members from CMU Catalyst, UW SAMPL, SJTU, OctoML, and the MLC community. We would love to continue developing and supporting the open-source ML community.
This project is only possible thanks to the shoulders open-source ecosystems that we stand on. We want to thank the Apache TVM community and developers of the TVM Unity effort. The open-source ML community members made these models publicly available. PyTorch and Hugging Face communities make these models accessible. We would like to thank the teams behind Vicuna, SentencePiece, LLaMA, and Alpaca. We also would like to thank the WebAssembly, Emscripten, and WebGPU communities. Finally, thanks to Dawn and WebGPU developers.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for web-llm
Similar Open Source Tools
web-llm
WebLLM is a modular and customizable javascript package that directly brings language model chats directly onto web browsers with hardware acceleration. Everything runs inside the browser with no server support and is accelerated with WebGPU. WebLLM is fully compatible with OpenAI API. That is, you can use the same OpenAI API on any open source models locally, with functionalities including json-mode, function-calling, streaming, etc. We can bring a lot of fun opportunities to build AI assistants for everyone and enable privacy while enjoying GPU acceleration.
storm
STORM is a LLM system that writes Wikipedia-like articles from scratch based on Internet search. While the system cannot produce publication-ready articles that often require a significant number of edits, experienced Wikipedia editors have found it helpful in their pre-writing stage. **Try out our [live research preview](https://storm.genie.stanford.edu/) to see how STORM can help your knowledge exploration journey and please provide feedback to help us improve the system 🙏!**
VoiceStreamAI
VoiceStreamAI is a Python 3-based server and JavaScript client solution for near-realtime audio streaming and transcription using WebSocket. It employs Huggingface's Voice Activity Detection (VAD) and OpenAI's Whisper model for accurate speech recognition. The system features real-time audio streaming, modular design for easy integration of VAD and ASR technologies, customizable audio chunk processing strategies, support for multilingual transcription, and secure sockets support. It uses a factory and strategy pattern implementation for flexible component management and provides a unit testing framework for robust development.
VMind
VMind is an open-source solution for intelligent visualization, providing an intelligent chart component based on LLM by VisActor. It allows users to create chart narrative works with natural language interaction, edit charts through dialogue, and export narratives as videos or GIFs. The tool is easy to use, scalable, supports various chart types, and offers one-click export functionality. Users can customize chart styles, specify themes, and aggregate data using LLM models. VMind aims to enhance efficiency in creating data visualization works through dialogue-based editing and natural language interaction.
Bard-API
The Bard API is a Python package that returns responses from Google Bard through the value of a cookie. It is an unofficial API that operates through reverse-engineering, utilizing cookie values to interact with Google Bard for users struggling with frequent authentication problems or unable to authenticate via Google Authentication. The Bard API is not a free service, but rather a tool provided to assist developers with testing certain functionalities due to the delayed development and release of Google Bard's API. It has been designed with a lightweight structure that can easily adapt to the emergence of an official API. Therefore, using it for any other purposes is strongly discouraged. If you have access to a reliable official PaLM-2 API or Google Generative AI API, replace the provided response with the corresponding official code. Check out https://github.com/dsdanielpark/Bard-API/issues/262.
llama_index
LlamaIndex is a data framework for building LLM applications. It provides tools for ingesting, structuring, and querying data, as well as integrating with LLMs and other tools. LlamaIndex is designed to be easy to use for both beginner and advanced users, and it provides a comprehensive set of features for building LLM applications.
raft
RAFT (Reusable Accelerated Functions and Tools) is a C++ header-only template library with an optional shared library that contains fundamental widely-used algorithms and primitives for machine learning and information retrieval. The algorithms are CUDA-accelerated and form building blocks for more easily writing high performance applications.
LazyLLM
LazyLLM is a low-code development tool for building complex AI applications with multiple agents. It assists developers in building AI applications at a low cost and continuously optimizing their performance. The tool provides a convenient workflow for application development and offers standard processes and tools for various stages of application development. Users can quickly prototype applications with LazyLLM, analyze bad cases with scenario task data, and iteratively optimize key components to enhance the overall application performance. LazyLLM aims to simplify the AI application development process and provide flexibility for both beginners and experts to create high-quality applications.
aire
Aire is a modern Laravel form builder with a focus on expressive and beautiful code. It allows easy configuration of form components using fluent method calls or Blade components. Aire supports customization through config files and custom views, data binding with Eloquent models or arrays, method spoofing, CSRF token injection, server-side and client-side validation, and translations. It is designed to run on Laravel 5.8.28 and higher, with support for PHP 7.1 and higher. Aire is actively maintained and under consideration for additional features like read-only plain text, cross-browser support for custom checkboxes and radio buttons, support for Choices.js or similar libraries, improved file input handling, and better support for content prepending or appending to inputs.
rosa
ROSA is an AI Agent designed to interact with ROS-based robotics systems using natural language queries. It can generate system reports, read and parse ROS log files, adapt to new robots, and run various ROS commands using natural language. The tool is versatile for robotics research and development, providing an easy way to interact with robots and the ROS environment.
allms
allms is a versatile and powerful library designed to streamline the process of querying Large Language Models (LLMs). Developed by Allegro engineers, it simplifies working with LLM applications by providing a user-friendly interface, asynchronous querying, automatic retrying mechanism, error handling, and output parsing. It supports various LLM families hosted on different platforms like OpenAI, Google, Azure, and GCP. The library offers features for configuring endpoint credentials, batch querying with symbolic variables, and forcing structured output format. It also provides documentation, quickstart guides, and instructions for local development, testing, updating documentation, and making new releases.
jina
Jina is a tool that allows users to build multimodal AI services and pipelines using cloud-native technologies. It provides a Pythonic experience for serving ML models and transitioning from local deployment to advanced orchestration frameworks like Docker-Compose, Kubernetes, or Jina AI Cloud. Users can build and serve models for any data type and deep learning framework, design high-performance services with easy scaling, serve LLM models while streaming their output, integrate with Docker containers via Executor Hub, and host on CPU/GPU using Jina AI Cloud. Jina also offers advanced orchestration and scaling capabilities, a smooth transition to the cloud, and easy scalability and concurrency features for applications. Users can deploy to their own cloud or system with Kubernetes and Docker Compose integration, and even deploy to JCloud for autoscaling and monitoring.
pipecat
Pipecat is an open-source framework designed for building generative AI voice bots and multimodal assistants. It provides code building blocks for interacting with AI services, creating low-latency data pipelines, and transporting audio, video, and events over the Internet. Pipecat supports various AI services like speech-to-text, text-to-speech, image generation, and vision models. Users can implement new services and contribute to the framework. Pipecat aims to simplify the development of applications like personal coaches, meeting assistants, customer support bots, and more by providing a complete framework for integrating AI services.
mflux
MFLUX is a line-by-line port of the FLUX implementation in the Huggingface Diffusers library to Apple MLX. It aims to run powerful FLUX models from Black Forest Labs locally on Mac machines. The codebase is minimal and explicit, prioritizing readability over generality and performance. Models are implemented from scratch in MLX, with tokenizers from the Huggingface Transformers library. Dependencies include Numpy and Pillow for image post-processing. Installation can be done using `uv tool` or classic virtual environment setup. Command-line arguments allow for image generation with specified models, prompts, and optional parameters. Quantization options for speed and memory reduction are available. LoRA adapters can be loaded for fine-tuning image generation. Controlnet support provides more control over image generation with reference images. Current limitations include generating images one by one, lack of support for negative prompts, and some LoRA adapters not working.
rtdl-num-embeddings
This repository provides the official implementation of the paper 'On Embeddings for Numerical Features in Tabular Deep Learning'. It focuses on transforming scalar continuous features into vectors before integrating them into the main backbone of tabular neural networks, showcasing improved performance. The embeddings for continuous features are shown to enhance the performance of tabular DL models and are applicable to various conventional backbones, offering efficiency comparable to Transformer-based models. The repository includes Python packages for practical usage, exploration of metrics and hyperparameters, and reproducing reported results for different algorithms and datasets.
lerobot
LeRobot is a state-of-the-art AI library for real-world robotics in PyTorch. It aims to provide models, datasets, and tools to lower the barrier to entry to robotics, focusing on imitation learning and reinforcement learning. LeRobot offers pretrained models, datasets with human-collected demonstrations, and simulation environments. It plans to support real-world robotics on affordable and capable robots. The library hosts pretrained models and datasets on the Hugging Face community page.
For similar tasks
web-llm
WebLLM is a modular and customizable javascript package that directly brings language model chats directly onto web browsers with hardware acceleration. Everything runs inside the browser with no server support and is accelerated with WebGPU. WebLLM is fully compatible with OpenAI API. That is, you can use the same OpenAI API on any open source models locally, with functionalities including json-mode, function-calling, streaming, etc. We can bring a lot of fun opportunities to build AI assistants for everyone and enable privacy while enjoying GPU acceleration.
agentcloud
AgentCloud is an open-source platform that enables companies to build and deploy private LLM chat apps, empowering teams to securely interact with their data. It comprises three main components: Agent Backend, Webapp, and Vector Proxy. To run this project locally, clone the repository, install Docker, and start the services. The project is licensed under the GNU Affero General Public License, version 3 only. Contributions and feedback are welcome from the community.
zep-python
Zep is an open-source platform for building and deploying large language model (LLM) applications. It provides a suite of tools and services that make it easy to integrate LLMs into your applications, including chat history memory, embedding, vector search, and data enrichment. Zep is designed to be scalable, reliable, and easy to use, making it a great choice for developers who want to build LLM-powered applications quickly and easily.
lollms
LoLLMs Server is a text generation server based on large language models. It provides a Flask-based API for generating text using various pre-trained language models. This server is designed to be easy to install and use, allowing developers to integrate powerful text generation capabilities into their applications.
LlamaIndexTS
LlamaIndex.TS is a data framework for your LLM application. Use your own data with large language models (LLMs, OpenAI ChatGPT and others) in Typescript and Javascript.
semantic-kernel
Semantic Kernel is an SDK that integrates Large Language Models (LLMs) like OpenAI, Azure OpenAI, and Hugging Face with conventional programming languages like C#, Python, and Java. Semantic Kernel achieves this by allowing you to define plugins that can be chained together in just a few lines of code. What makes Semantic Kernel _special_ , however, is its ability to _automatically_ orchestrate plugins with AI. With Semantic Kernel planners, you can ask an LLM to generate a plan that achieves a user's unique goal. Afterwards, Semantic Kernel will execute the plan for the user.
botpress
Botpress is a platform for building next-generation chatbots and assistants powered by OpenAI. It provides a range of tools and integrations to help developers quickly and easily create and deploy chatbots for various use cases.
BotSharp
BotSharp is an open-source machine learning framework for building AI bot platforms. It provides a comprehensive set of tools and components for developing and deploying intelligent virtual assistants. BotSharp is designed to be modular and extensible, allowing developers to easily integrate it with their existing systems and applications. With BotSharp, you can quickly and easily create AI-powered chatbots, virtual assistants, and other conversational AI applications.
For similar jobs
weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.
LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.
VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.
kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.
PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.
tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.
spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.
Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.