bedrock-book
書籍「Amazon Bedrock 生成AIアプリ開発入門」のサンプルコード
Stars: 59
This repository contains sample code for hands-on exercises related to the book 'Amazon Bedrock 生成AIアプリ開発入門'. It allows readers to easily access and copy the code. The repository also includes directories for each chapter's hands-on code, settings, and a 'requirements.txt' file listing necessary Python libraries. Updates and error fixes will be provided as needed. Users can report issues in the repository's 'Issues' section, and errata will be published on the SB Creative official website.
README:
表題の書籍のハンズオンを実施しやすいよう、サンプルコード部分をファイルとして格納したリポジトリです。
- 紙の書籍を購入くださった方も、コピー&ペーストが可能になります。
- 今後の環境変化でコードに不具合が生じた際、適宜改修していきます。
まだお持ちでない方は、ぜひお買い求めください!
-
chapter⚫️
ディレクトリ :各章のハンズオン用コードや、手打ちが大変な設定値などを格納しています。- 必要なPythonライブラリを記載した
requirements.txt
も、参考までに格納しています。 - 書籍刊行後の機能アップデートへの対応方法などを
README.md
にて補足しています。
- 必要なPythonライブラリを記載した
本リポジトリの Issues へ起票ください。ベストエフォートで対応します。
SBクリエイティブ公式サイト にて、正誤情報を適宜掲載します。
ハンズオン用の開発環境として案内しているAWS Cloud9の新規利用が、2024/7/29より一部制限されたことを確認しています。 付録4の代替となる手順を以下ブログ記事で公開しました。各章の再検証も進めており、内容は随時更新しています。
AWS Cloud9が突然、新規利用不可に? 代替策「SageMaker Studio コードエディタ」の利用手順
Anthropic社の新モデルで、Claude 3 Sonnetの後継となります。性能・コストともにClaude 3 Opusをも上回るとされています。
本書のハンズオンへの取り込み方法
- 書籍P.80を参考に
Claude 3.5 Sonnet
をバージニア北部リージョンのBedrockで有効化する- 「利用不可」ステータスとなり有効化できないことがあります。その際は日にちをおいてリトライするか、AWSサポートに問い合わせてみてください。
- 各章のサンプルコードにおいて、Claude 3 SonnetのモデルIDを指定している箇所を、Claude 3.5 SonnetのモデルID(
anthropic.claude-3-5-sonnet-20240620-v1:0
)に置き換える
注意点
- Bedrockでは、GUIやAPI経由での単体モデル呼び出しに対応していますが、応用機能(ナレッジベースやエージェント)へは未対応です(2024/6/20時点)。
- Knowkedge bases for Amazon Bedrockにおいては、
Retrieve
APIを利用すればClaude 3.5 Sonnetをすぐに活用できます(書籍P.216参照)。
同社の既存モデル「Jurassic-2」シリーズを上回る高性能モデル。256Kトークンという大容量のコンテキストウィンドウに対応。言語は英語のみ。
同社の既存モデル「Llama 3」シリーズの後継モデル。
- Amazon Titan Image Generator G1 V2と戯れる(Gradioがおすすめ)
- Amazon Bedrock で Amazon Titan Image Generator v2 が利用可能に
【2024/9/4】 Stability AI社の新モデル「Stable Image Ultra」「Stable Diffusion 3 Large (SD3 Large)」「Stable Image Core」がリリース
解説スライドを公開しています。本書を読まれた方は、アップデートをより理解しやすいと思います!
「6.4.1 バッチ推論」にて解説している機能が一般提供を開始しました。専用のSDKは不要で利用できます。
複数のリージョンを使った動的なルーティングをサポートしました。例えば、「US Anthropic Claude 3.5 Sonnet 」を指定すると、バージニア北部とオレゴンリージョンを使用して推論することができます。指定方法は、モデルIDとしてinference profile(専用のモデルID)を指定します。(例:us.anthropic.claude-3-5-sonnet-20240620-v1:0 )
参考記事(クラウドWatch)
LangChainの新バージョン「0.3.0」がリリースされました。(書籍執筆時点では0.2.0でした)。3章、4章、5章でLangChainを使用していますが、ライブラリーのバージョンアップのみで動作することを確認しました。動作確認を行ったディレクトリに「requirements_langchain-0.3.0.txt」を格納しましたので、LangChain 0.3.0で実施する際は、以下のコマンドにてインストールしてください。
pip install -r requirements_langchain-0.3.0.txt
たくさんの素敵なアウトプット、ありがとうございます!!🙇♂️
- おむろんさん 「Amazon Bedrock生成AIアプリ開発入門」本の感想を宇宙最速で述べる #Bedrock開発入門 - omuronの備忘録
- cyberBOSEさん 「Amazon Bedrock 生成AIアプリ開発入門」レビュー #Bedrock開発入門 #Python - Qiita
- s.hirutaさん Bedrock開発入門書籍レビュー | クラウドインフラ構築記
- hmatsu47さん Amazon Bedrock 生成 AI アプリ開発入門[AWS 深掘りガイド]の紹介 - 構築中。
- Renya K.さん 「Amazon Bedrock」で始める生成AIアプリ開発入門バイブルの登場!! #AWS - Qiita
- hayao_kさん Amazon Bedrock 生成AIアプリ開発入門 レビュー #Bedrock開発入門 #AWS - Qiita
- 星野ぽぽぽさん 【書評】Amazon Bedrock 生成 AI アプリ開発入門|星野ぽぽぽ(noteのすがた)
- kazzpapa3さん Amazon Bedrock 生成AIアプリ開発入門 の書評 という名の雑記 - ほぼ自分のための備忘録ブログ
- 石原直樹さん 「Amazon Bedrock 生成AIアプリ開発入門」 レビュー #Bedrock開発入門 #AWS - Qiita
- kzk_maedaさん Bedrock開発入門を読みました|kzk_maeda
- 山本紘暉さん 【書評】Amazon Bedrock 生成AIアプリ開発入門 [AWS深掘りガイド] | DevelopersIO
- つくぼしさん AWSにおける生成AIアプリ開発を学ぶには最適の入門書「Amazon Bedrock 生成AIアプリ開発入門」 | DevelopersIO
- 平野文雄さん 「Amazon Bedrock 生成AIアプリ開発入門」のススメ | DevelopersIO
- Akihiro Uenoさん 『Amazon Bedrock 生成AIアプリ開発入門』の感想をば
- yuki_inkさん 『Amazon Bedrock 生成AIアプリ開発入門』 から始めるAIエージェント #AWS - Qiita
- しまさん 【感想】『Amazon Bedrock 生成AIアプリ開発入門』を読みました
- mongolyyさん 「Amazon Bedrock 生成AIアプリ開発入門 」を読んだ - mongolyyのブログ
- issyさん 書籍「Amazon Bedrock 生成AIアプリ開発入門-第4章-」 × AWS Summit Japan 2024
- Shinodaさん 書評「Amazon Bedrock 生成AIアプリ開発入門」|Shinoda
- MK_Techさん 『感想』Amazon Bedrock生成AIアプリ開発入門 #AWS - Qiita
- Masaru Oguraさん Amazon Bedrock 生成AIアプリ開発入門の感想文|Masaru Ogura
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for bedrock-book
Similar Open Source Tools
bedrock-book
This repository contains sample code for hands-on exercises related to the book 'Amazon Bedrock 生成AIアプリ開発入門'. It allows readers to easily access and copy the code. The repository also includes directories for each chapter's hands-on code, settings, and a 'requirements.txt' file listing necessary Python libraries. Updates and error fixes will be provided as needed. Users can report issues in the repository's 'Issues' section, and errata will be published on the SB Creative official website.
rime_wanxiang_pro
Rime Wanxiang Pro is an enhanced version of Wanxiang, supporting the 9, 14, and 18-key layouts. It features a pinyin library with optimized word and language models, supporting accurate sentence output with tones. The tool also allows for mixed Chinese and English input, offering various usage scenarios. Users can customize their input method by selecting different decoding and auxiliary code rules, enabling flexible combinations of pinyin and auxiliary codes. The tool simplifies the complex configuration of Rime and provides a unified word library for multiple input methods, enhancing input efficiency and user experience.
awesome-chatgpt-zh
The Awesome ChatGPT Chinese Guide project aims to help Chinese users understand and use ChatGPT. It collects various free and paid ChatGPT resources, as well as methods to communicate more effectively with ChatGPT in Chinese. The repository contains a rich collection of ChatGPT tools, applications, and examples.
Long-Novel-GPT
Long-Novel-GPT is a long novel generator based on large language models like GPT. It utilizes a hierarchical outline/chapter/text structure to maintain the coherence of long novels. It optimizes API calls cost through context management and continuously improves based on self or user feedback until reaching the set goal. The tool aims to continuously refine and build novel content based on user-provided initial ideas, ultimately generating long novels at the level of human writers.
Tegridy-MIDI-Dataset
Tegridy MIDI Dataset is an ultimate multi-instrumental MIDI dataset designed for Music Information Retrieval (MIR) and Music AI purposes. It provides a comprehensive collection of MIDI datasets and essential software tools for MIDI editing, rendering, transcription, search, classification, comparison, and various other MIDI applications.
LLMLanding
LLMLanding is a repository focused on practical implementation of large models, covering topics from theory to practice. It provides a structured learning path for training large models, including specific tasks like training 1B-scale models, exploring SFT, and working on specialized tasks such as code generation, NLP tasks, and domain-specific fine-tuning. The repository emphasizes a dual learning approach: quickly applying existing tools for immediate output benefits and delving into foundational concepts for long-term understanding. It offers detailed resources and pathways for in-depth learning based on individual preferences and goals, combining theory with practical application to avoid overwhelm and ensure sustained learning progress.
ESP32_AI_LLM
ESP32_AI_LLM is a project that uses ESP32 to connect to Xunfei Xinghuo, Dou Bao, and Tongyi Qianwen large models to achieve voice chat functions, supporting online voice wake-up, continuous conversation, music playback, and real-time display of conversation content on an external screen. The project requires specific hardware components and provides functionalities such as voice wake-up, voice conversation, convenient network configuration, music playback, volume adjustment, LED control, model switching, and screen display. Users can deploy the project by setting up Xunfei services, cloning the repository, configuring necessary parameters, installing drivers, compiling, and burning the code.
AIMedia
AIMedia is a fully automated AI media software that automatically fetches hot news, generates news, and publishes on various platforms. It supports hot news fetching from platforms like Douyin, NetEase News, Weibo, The Paper, China Daily, and Sohu News. Additionally, it enables AI-generated images for text-only news to enhance originality and reading experience. The tool is currently commercialized with plans to support video auto-generation for platform publishing in the future. It requires a minimum CPU of 4 cores or above, 8GB RAM, and supports Windows 10 or above. Users can deploy the tool by cloning the repository, modifying the configuration file, creating a virtual environment using Conda, and starting the web interface. Feedback and suggestions can be submitted through issues or pull requests.
aimoneyhunter
AiMoneyHunter is a comprehensive collection of information on AI side hustle opportunities, covering various methods, technologies, tools, platforms, and channels for making money with AI. It aims to break information barriers in the AI era, enabling everyone to leverage AI intelligence for side hustles and earn extra income. The repository includes curated AI-related content sources, tips on starting a side hustle, and insights on using AI technologies for various money-making tasks.
ezwork-ai-doc-translation
EZ-Work AI Document Translation is an AI document translation assistant accessible to everyone. It enables quick and cost-effective utilization of major language model APIs like OpenAI to translate documents in formats such as txt, word, csv, excel, pdf, and ppt. The tool supports AI translation for various document types, including pdf scanning, compatibility with OpenAI format endpoints via intermediary API, batch operations, multi-threading, and Docker deployment.
MarkMap-OpenAi-ChatGpt
MarkMap-OpenAi-ChatGpt is a Vue.js-based mind map generation tool that allows users to generate mind maps by entering titles or content. The application integrates the markmap-lib and markmap-view libraries, supports visualizing mind maps, and provides functions for zooming and adapting the map to the screen. Users can also export the generated mind map in PNG, SVG, JPEG, and other formats. This project is suitable for quickly organizing ideas, study notes, project planning, etc. By simply entering content, users can get an intuitive mind map that can be continuously expanded, downloaded, and shared.
Code-Interpreter-Api
Code Interpreter API is a project that combines a scheduling center with a sandbox environment, dedicated to creating the world's best code interpreter. It aims to provide a secure, reliable API interface for remotely running code and obtaining execution results, accelerating the development of various AI agents, and being a boon to many AI enthusiasts. The project innovatively combines Docker container technology to achieve secure isolation and execution of Python code. Additionally, the project supports storing generated image data in a PostgreSQL database and accessing it through API endpoints, providing rich data processing and storage capabilities.
aipan-netdisk-search
Aipan-Netdisk-Search is a free and open-source web project for searching netdisk resources. It utilizes third-party APIs with IP access restrictions, suggesting self-deployment. The project can be easily deployed on Vercel and provides instructions for manual deployment. Users can clone the project, install dependencies, run it in the browser, and access it at localhost:3001. The project also includes documentation for deploying on personal servers using NUXT.JS. Additionally, there are options for donations and communication via WeChat.
AI-Drug-Discovery-Design
AI-Drug-Discovery-Design is a repository focused on Artificial Intelligence-assisted Drug Discovery and Design. It explores the use of AI technology to accelerate and optimize the drug development process. The advantages of AI in drug design include speeding up research cycles, improving accuracy through data-driven models, reducing costs by minimizing experimental redundancies, and enabling personalized drug design for specific patients or disease characteristics.
ai-enablement-stack
The AI Enablement Stack is a curated collection of venture-backed companies, tools, and technologies that enable developers to build, deploy, and manage AI applications. It provides a structured view of the AI development ecosystem across five key layers: Agent Consumer Layer, Observability and Governance Layer, Engineering Layer, Intelligence Layer, and Infrastructure Layer. Each layer focuses on specific aspects of AI development, from end-user interaction to model training and deployment. The stack aims to help developers find the right tools for building AI applications faster and more efficiently, assist engineering leaders in making informed decisions about AI infrastructure and tooling, and help organizations understand the AI development landscape to plan technology adoption.
llm-resource
llm-resource is a comprehensive collection of high-quality resources for Large Language Models (LLM). It covers various aspects of LLM including algorithms, training, fine-tuning, alignment, inference, data engineering, compression, evaluation, prompt engineering, AI frameworks, AI basics, AI infrastructure, AI compilers, LLM application development, LLM operations, AI systems, and practical implementations. The repository aims to gather and share valuable resources related to LLM for the community to benefit from.
For similar tasks
bedrock-book
This repository contains sample code for hands-on exercises related to the book 'Amazon Bedrock 生成AIアプリ開発入門'. It allows readers to easily access and copy the code. The repository also includes directories for each chapter's hands-on code, settings, and a 'requirements.txt' file listing necessary Python libraries. Updates and error fixes will be provided as needed. Users can report issues in the repository's 'Issues' section, and errata will be published on the SB Creative official website.
FocusOnAI_24
The .NET Conf Focus on AI 2024 repository contains content from the event focusing on incorporating AI into .NET applications and services. It includes slides and demos showcasing various AI-powered web apps, AI models, generative AI apps, and more. The repository serves as a resource for developers looking to explore AI integration with .NET technologies.
caikit
Caikit is an AI toolkit that enables users to manage models through a set of developer friendly APIs. It provides a consistent format for creating and using AI models against a wide variety of data domains and tasks.
For similar jobs
promptflow
**Prompt flow** is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality.
deepeval
DeepEval is a simple-to-use, open-source LLM evaluation framework specialized for unit testing LLM outputs. It incorporates various metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., and runs locally on your machine for evaluation. It provides a wide range of ready-to-use evaluation metrics, allows for creating custom metrics, integrates with any CI/CD environment, and enables benchmarking LLMs on popular benchmarks. DeepEval is designed for evaluating RAG and fine-tuning applications, helping users optimize hyperparameters, prevent prompt drifting, and transition from OpenAI to hosting their own Llama2 with confidence.
MegaDetector
MegaDetector is an AI model that identifies animals, people, and vehicles in camera trap images (which also makes it useful for eliminating blank images). This model is trained on several million images from a variety of ecosystems. MegaDetector is just one of many tools that aims to make conservation biologists more efficient with AI. If you want to learn about other ways to use AI to accelerate camera trap workflows, check out our of the field, affectionately titled "Everything I know about machine learning and camera traps".
leapfrogai
LeapfrogAI is a self-hosted AI platform designed to be deployed in air-gapped resource-constrained environments. It brings sophisticated AI solutions to these environments by hosting all the necessary components of an AI stack, including vector databases, model backends, API, and UI. LeapfrogAI's API closely matches that of OpenAI, allowing tools built for OpenAI/ChatGPT to function seamlessly with a LeapfrogAI backend. It provides several backends for various use cases, including llama-cpp-python, whisper, text-embeddings, and vllm. LeapfrogAI leverages Chainguard's apko to harden base python images, ensuring the latest supported Python versions are used by the other components of the stack. The LeapfrogAI SDK provides a standard set of protobuffs and python utilities for implementing backends and gRPC. LeapfrogAI offers UI options for common use-cases like chat, summarization, and transcription. It can be deployed and run locally via UDS and Kubernetes, built out using Zarf packages. LeapfrogAI is supported by a community of users and contributors, including Defense Unicorns, Beast Code, Chainguard, Exovera, Hypergiant, Pulze, SOSi, United States Navy, United States Air Force, and United States Space Force.
llava-docker
This Docker image for LLaVA (Large Language and Vision Assistant) provides a convenient way to run LLaVA locally or on RunPod. LLaVA is a powerful AI tool that combines natural language processing and computer vision capabilities. With this Docker image, you can easily access LLaVA's functionalities for various tasks, including image captioning, visual question answering, text summarization, and more. The image comes pre-installed with LLaVA v1.2.0, Torch 2.1.2, xformers 0.0.23.post1, and other necessary dependencies. You can customize the model used by setting the MODEL environment variable. The image also includes a Jupyter Lab environment for interactive development and exploration. Overall, this Docker image offers a comprehensive and user-friendly platform for leveraging LLaVA's capabilities.
carrot
The 'carrot' repository on GitHub provides a list of free and user-friendly ChatGPT mirror sites for easy access. The repository includes sponsored sites offering various GPT models and services. Users can find and share sites, report errors, and access stable and recommended sites for ChatGPT usage. The repository also includes a detailed list of ChatGPT sites, their features, and accessibility options, making it a valuable resource for ChatGPT users seeking free and unlimited GPT services.
TrustLLM
TrustLLM is a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. The document explains how to use the trustllm python package to help you assess the performance of your LLM in trustworthiness more quickly. For more details about TrustLLM, please refer to project website.
AI-YinMei
AI-YinMei is an AI virtual anchor Vtuber development tool (N card version). It supports fastgpt knowledge base chat dialogue, a complete set of solutions for LLM large language models: [fastgpt] + [one-api] + [Xinference], supports docking bilibili live broadcast barrage reply and entering live broadcast welcome speech, supports Microsoft edge-tts speech synthesis, supports Bert-VITS2 speech synthesis, supports GPT-SoVITS speech synthesis, supports expression control Vtuber Studio, supports painting stable-diffusion-webui output OBS live broadcast room, supports painting picture pornography public-NSFW-y-distinguish, supports search and image search service duckduckgo (requires magic Internet access), supports image search service Baidu image search (no magic Internet access), supports AI reply chat box [html plug-in], supports AI singing Auto-Convert-Music, supports playlist [html plug-in], supports dancing function, supports expression video playback, supports head touching action, supports gift smashing action, supports singing automatic start dancing function, chat and singing automatic cycle swing action, supports multi scene switching, background music switching, day and night automatic switching scene, supports open singing and painting, let AI automatically judge the content.